精英家教网 > 初中数学 > 题目详情
如图,O为正方形ABCD的对角线AC与BD的交点,M、N两点分别在BC与AB上,且OM⊥ON.
(1)试说明OM=ON;
(2)试判断CN与DM的关系,并加以证明.
分析:(1)根据正方形性质得出OC=OD=OB,∠OCM=∠OBN=45°,BD⊥AC,求出∠COM=∠BON,证出△ONB≌△OMC即可;
(2)求出OC=OD,∠DOM=∠CON,证△DOM≌△CON,推出CN=DM,∠DMO=∠CNO,求出∠MFE=90°即可.
解答:(1)解:∵四边形ABCD是正方形,
∵OC=OB,∠OCM=∠OBN=45°,BD⊥AC,
∵OM⊥ON,
∴∠MON=∠COB=90°,
∴∠MON-∠MOB=∠COD-∠MOB,
∴∠COM=∠BON,
∵在△ONB和△OMC中,
∠NOB=∠MOC
OB=OC
∠OBN=∠OCM

∴△ONB≌△OMC(ASA),
∴OM=ON.

(2)CN=DM,CN⊥DM,
证明:∵四边形ABCD是正方形,
∴OC=OD,BD⊥AC,
∴∠DOC=∠BOC=90°,
∵∠COM=∠BON,
∴∠DOC+∠COM=∠BOC+∠BON,
即∠DOM=∠CON,
∵在△DOM和△CON中
OD=OC
∠DOM=∠CON
OM=ON

∴△DOM≌△CON(SAS),
∴CN=DM,∠DMO=∠CNO,
∵∠MON=90°,
∴∠NEO+∠CNO=90°,
∵∠MEC=∠NEO,
∴∠DMO+∠MEC=90°,
∴∠MFE=180°-90°=90°,
∴CN⊥DM.
点评:本题考查了正方形性质,全等三角形的性质和判定,垂直定义的应用,注意:正方形的对角线平分、相等、垂直且每一条对角线平分一组对角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,E为正方形ABCD的边AB上一点(不含A、B点),F为BC边的延长线上一点,△DAE旋转后能与△DCF重合.
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果连接EF,那么△DEF是怎样的三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿精英家教网OM方向以
2
个单位每秒速度运动,运动时间为t.求:
(1)C的坐标为
 

(2)当t为何值时,△ANO与△DMR相似?
(3)△HCR面积S与t的函数关系式;并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,G为正方形ABCD的对称中心,A(0,2),B(1,0),直线OG交AB于E,DC于F,点Q从A出发沿A→B→C的方向以
5
个单位每秒速度运动,同时,点P从O出发沿OF方精英家教网向以
2
个单位每秒速度运动,Q点到达终点,点P停止运动,运动时间为t.求:
(1)求G点的坐标.
(2)当t为何值时,△AEO与△DFP相似?
(3)求△QCP面积S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为正方形ABCD的对称中心,正方形ABCD的边长为
10
,tan∠ABO=3,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以
2
个单位每秒速度运动,运动时间为t,求:
(1)直接写出A、D、P的坐标;
(2)求△HCR面积S与t的函数关系式;
(3)当t为何值时,△ANO与△DMR相似?
(4)求以A、B、C、R为顶点的四边形是梯形时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•梅州一模)如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙0与BC相切于点M,与AB、AD分别相交于点E、F.
(1)求证:CD与⊙0相切;
(2)若⊙0的半径为
2
,求正方形ABCD的边长.

查看答案和解析>>

同步练习册答案