精英家教网 > 初中数学 > 题目详情

已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CECF分别与直线AB交于点MN

(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2

思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.

请你完成证明过程:

(Ⅱ)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.

答案:
解析:

  (Ⅰ)证明:将△沿直线对折,得△,连

  则△≌△. 1分

  有

  又由,得. 2分

  由

  

  

  得. 3分

  又

  ∴△≌△. 4分

  有

  ∴. 5分

  ∴在Rt△中,由勾股定理,

  得.即. 6分

  (Ⅱ)关系式仍然成立. 7分

  证明:将△沿直线对折,得△,连

  则△≌△. 8分

  有

  

  又由,得

  由

  

  得. 9分

  又

  ∴△≌△

  有

  ∴

  ∴在Rt△中,由勾股定理,

  得.即. 10分


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.求m的值及AC、BC的长(BC>AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

查看答案和解析>>

同步练习册答案