精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;
(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.
分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x-1)(x-5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;
(2)由已知,可求得P(6,4),由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又知点P的坐标中x>5,所以MP>2,AP>2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况,则分析求解即可求得答案;
(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,
4
5
t2-
24
5
t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.
解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x-1)(x-5),
把点A(0,4)代入上式得:a=
4
5

∴y=
4
5
(x-1)(x-5)=
4
5
x2-
24
5
x+4=
4
5
(x-3)2-
16
5

∴抛物线的对称轴是:x=3;

(2)P点坐标为:(6,4),
由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,
又∵点P的坐标中x>5,
∴MP>2,AP>2;
∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,
精英家教网∴四条边的长只能是3、4、5、6的一种情况,
在Rt△AOM中,AM=
OA2+OM2
=
42+32
=5,
∵抛物线对称轴过点M,
∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,
即PM=5,此时点P横坐标为6,即AP=6;
故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,
即P(6,4);

(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.
设N点的横坐标为t,此时点N(t,
4
5
t2-
24
5
t+4)(0<t<5),精英家教网
过点N作NG∥y轴交AC于G;作AM⊥NG于M,
由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=-
4
5
x+4;
把x=t代入得:y=-
4
5
t+4,则G(t,-
4
5
t+4),
此时:NG=-
4
5
x+4-(
4
5
t2-
24
5
t+4)=-
4
5
t2+4t,
∵AM+CF=CO,
∴S△ACN=S△ANG+S△CGN=
1
2
AM×NG+
1
2
NG×CF=
1
2
NG•OC=
1
2
(-
4
5
t2+4t)×5=-2t2+10t=-2(t-
5
2
2+
25
2

∴当t=
5
2
时,△CAN面积的最大值为
25
2

由t=
5
2
,得:y=
4
5
t2-
24
5
t+4=-3,
∴N(
5
2
,-3).
点评:此题考查了待定系数法求二次函数的解析式,勾股定理以及三角形面积的最大值问题.此题综合性很强,难度很大,解题的关键是方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案