精英家教网 > 初中数学 > 题目详情
22、如图,在△ABC中,AB=AC.

(1)若O为AB的中点,以O为圆心,OB为半径的圆交BC于点D,过D作DE⊥AC,垂足为E(如图①).证明:DE是⊙O的切线;
(2)若点O沿OB向点B移动,以O为圆心,以OB为半径画圆,⊙O与AC相切于点F,与AB相交于点G,与BC相交于点D,DE⊥AC,垂足为E(如图②),已知⊙O的半径长为3,CE=1,求切线AF的长.
分析:(1)连接OD,证OD⊥DE,即DE与⊙O相切;
(2)作辅助线,连接OD,AF,由DE、AF是⊙O的切线,DE⊥AC,可证四边形ODEF为矩形,根据AB=AC,可得:AO=AF+1,故在Rt△AOF中,运用勾股定理可将AF的值求出.
解答:(1)证明:连接OD;
∵OB=OD,
∴∠ABC=∠ODB.
又∵∠ABC=∠ACB,
∴∠ODB=∠ACB.
∴OD∥AC.
∵DE⊥AC,
∴OD⊥DE.
∴DE与⊙O相切.

(2)解:连接OD,OF;
∵DE、AF是⊙O的切线,
∴OF⊥AC,OD⊥DE.
又∵DE⊥AC,
∴四边形ODEF为矩形.
∴OD=EF=3.
设AF=x,则AB=AC=x+3+1=x+4,AO=AB-OB=x+4-3=x+1
∵OF⊥AC,
∴AO2=OF2+AF2即:(x+1)2=9+x2解得x=4.
∴AF的长度为4.
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案