精英家教网 > 初中数学 > 题目详情
(2012•娄底)如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式(要求写出自变量x的取值范围);当x为何值时,y有最大值?并求y的最大值.
分析:(1)由AB=AC,∠B=30°,根据等边对等角,可求得∠C=∠B=30°,又由△DEF是等边三角形,根据等边三角形的性质,易求得∠MDB=∠NEC=120°,∠BMD=∠B=∠C=∠CNE=30°,即可判定:△BMD∽△CNE;
(2)首先过点M作MH⊥BC,设BD=x,由以M为圆心,以MF为半径的圆与BC相切,可得MH=MF=4-x,由(1)可得MD=BD,然后在Rt△DMH中,利用正弦函数,即可求得答案;
(3)首先求得△ABC的面积,继而求得△BDM的面积,然后由相似三角形的性质,可求得△CNE的面积,再利用二次函数的最值问题,即可求得答案.
解答:(1)证明:∵AB=AC,
∴∠B=∠C=30°,
∵△DEF是等边三角形,
∴∠FDE=∠FED=60°,
∴∠MDB=∠NEC=120°,
∴∠BMD=∠B=∠C=∠CNE=30°,
∴△BMD∽△CNE;

(2)解:过点M作MH⊥BC,
∵以M为圆心,以MH为半径的圆,则与BC相切,
∴MH=MF,
设BD=x,
∵△DEF是等边三角形,
∴∠FDE=60°,
∵∠B=30°,
∴∠BMD=∠FDE-∠B=60°-30°=30°=∠B,
∴DM=BD=x,
∴MH=MF=DF-MD=4-x,
在Rt△DMH中,sin∠MDH=sin60°=
MH
MD
=
4-x
x
=
3
2

解得:x=16-8
3

∴当BD=16-8
3
时,以M为圆心,以MF为半径的圆与BC相切;

(3)解:过点M作MH⊥BC于H,过点A作AK⊥BC于K,
∵AB=AC,
∴BK=
1
2
BC=
1
2
×8=4,
∵∠B=30°,
∴AK=BK•tan∠B=4×
3
3
=
4
3
3

∴S△ABC=
1
2
BC•AK=
1
2
×8×
4
3
3
=
16
3
3

由(2)得:MD=BD=x,
∴MH=MD•sin∠MDH=
3
2
x,
∴S△BDM=
1
2
•x•
3
2
x=
3
4
x2
∵△DEF是等边三角形且DE=4,BC=8,
∴EC=BC-BD-DE=8-x-4=4-x,
∵△BMD∽△CNE,
∴S△BDM:S△CEN=(
BD
CE
2=
x2
(4-x)2

∴S△CEN=
3
4
(4-x)2
∴y=S△ABC-S△CEN-S△BDM=
16
3
3
-
3
4
x2-
3
4
(4-x)2=-
3
2
x2+2
3
x+
4
3
3
=-
3
2
(x-2)2+
10
3
3
4
3
<x<
8
3
),
当x=2时,y有最大值,最大值为
10
3
3
点评:此题考查了相似三角形的判定与性质、等腰三角形的性质、等边三角形的性质、二次函数的性质以及三角函数等知识.此题综合性较强,难度较大,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•娄底)如图,在一场羽毛球比赛中,站在场内M处的运动员林丹把球从N点击到了对方内的B点,已知网高OA=1.52米,OB=4米,OM=5米,则林丹起跳后击球点N离地面的距离NM=
3.42
3.42
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,
3
≈1.732).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.
(1)求证:△MBA≌△NDC;
(2)四边形MPNQ是什么样的特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=
2
2

查看答案和解析>>

同步练习册答案