精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,点D,E分别在边AB,AC上,给出5个论断:①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30°;⑤CD=BE.
(1)如果论断①②③④都成立,那么论断⑤一定成立吗?答:
 

(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是
 
(只需填论断的序号).
分析:根据已知及全等三角形的判定方法进行分析,以及中垂线的性质,等腰三角形和等边三角形的判定和性质求解,从而得到答案.
解答:精英家教网解:(1)∵BE⊥AC,AE=CE,
∴BE是AC的中垂线;
∴BC=AB;
∴△ABC是等腰三角形;
∴∠ABE=∠CBE;
∵∠ABE=30°,
∴∠CBA=60°;
∴△ABC是等边三角形;
∵CD⊥AB,BE⊥AC,
∴CD=BE;
故成立;

(2)应该选1,3,4;
延长BE到G,使EG=BE,连接CG.
∵BE=EG,CE=AE,
∴△ABE≌△CEG;
∴∠ABE=∠CGE=30°;
∴AB∥CG;
∵CD⊥AB,
∴∠ADC=∠DCG=90°;
∵∠CGE=30°,
设CD与BE交点为O.
∴OC=
1
2
OG;
∵∠ABE=30°,
∴OD=
1
2
OB;
∴OB+OG=BG=2BE;
∵OD+OC=CD,
∴BE=CD.
点评:本题考查了全等三角形的判定和性质;正确作出辅助线是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案