精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在RtABC中,∠BAC90°,∠B45°OBC中点,如果点MN分别在线段ABAC上移动,设AM长为xCN的长为y,且xy满足等式0a0).

1)求证:BMAN

2)请你证明OMN为等腰直角三角形.

【答案】1)见解析;(2)见解析

【解析】

1)由等式可得出x=y=a,结合等腰直角三角形的性质,即可证得;
2)作OEACOFAB,通过证明OFM≌△OEN,可得OM=ON,根据全等三角形的性质,只要证得∠MON=90°,即可证得.

证明:(1)∵xy满足等式0a0),

xya,即AMCNa

RtABC中,∠BAC90°,∠B45°

ABAC

BMAN

2)作OEACOFAB

∴∠OFM=∠ONE=∠FOE90°

∵点OBC的中点,

OEOFABACAFBFAECE

OFOEAFCE

AFAMCECN

MFNE

∴在△OFM和△OEN

∴△OFM≌△OENSAS),

OMON,∠MOF=∠NOE

∵∠FOM+MOE90°

∴∠MOE+NOE=∠MON90°

∴△OMN是等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,yx成反比例).

(1)根据图象分别求出血液中酒精浓度上升和下降阶段yx之间的函数表达式.

(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 AB=ACCD⊥ABDBE⊥ACEBECD相交于点O

1)求证AD=AE

2)连接OABC,试判断直线OABC的关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】无论取什么实数时,P总在直线,且点也在直线,的值为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=kx(k0)的图象与x轴相交所成的锐角为70°,定点A的坐标为(0,8),P为y轴上的一个动点,M、N为函数y=kx(k0)的图象上的两个动点,则AM+MP+PN的最小值为(  )

A. 4 B. 4 C. 8sin40° D. 8sin20°(1+cos20°+sin20°cos20°)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC边上的高,AEBC边上的中线,C=45°sinB=AD=1

1)求BC的长;

2)求tanDAE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,ABAC,点D是直线BC上一点(不与BC重合),以AD为一边在AD的右侧作△ADE,使ADAE,∠DAE=∠BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC90°,则∠BCE_____度;如图2,当点D在线段BC上,如果∠BAC60°,则∠BCE______.

(2)设∠BACα,∠BCEβ,如图3,当点D在线段BC上移动,则αβ之间有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2-2ax+cx轴交于A,B两点,与y轴正半轴交于点C,且A(-1,0).

(1)一元二次方程ax2-2ax+c=0的解是

(2)一元二次不等式ax2-2ax+c>0的解集是

(3)若抛物线的顶点在直线y=2x上,求此抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】温州市处于东南沿海,夏季经常遭受台风袭击,一次,温州气象局测得台风中心在温州市的正西方向300千米的处,以每小时千米的速度向东偏南方向移动,距台风中心200千米的范围是受台风严重影响的区域,试问:

1)台风中心在移动过程中离温州市最近距离是多少千米?

2)温州市是否受台风影响?若不会受到,请说明理由;若会受到,求出温州市受台风严重影响的时间.

查看答案和解析>>

同步练习册答案