精英家教网 > 初中数学 > 题目详情
(2010•内江)如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.

【答案】分析:(1)将抛物线的解析式化为顶点坐标式,即可得到顶点M的坐标;抛物线的解析式中,令y=0,可求得A、B的坐标.
(2)易求得C点坐标,即可得到OC的长,以AB为底,OC为高,即可求出△ABC的面积;△BCM的面积无法直接求得,可用割补法求解,过M作MD⊥x轴于D,根据B、C、M四点坐标,可分别求出梯形OCMD、△BDM的面积,它们的面积和减去△BOC的面积即为△BCM的面积,进而可得到△ABC、△BCM的面积比.
(3)首先根据B、C、M的坐标,求出BC2、BM2、CM2的值,由于△BCM中,B、C、M都有可能是直角顶点,所以要分三种情况讨论:①∠BCM=90°,②∠BMC=90°,③∠MBC=90°,在上述三种不同的直角三角形中,利用勾股定理可求得m的值,进而可确定抛物线的解析式.
解答:解:(1)∵y=mx2-2mx-3m=m(x2-2x-3)=m(x-1)2-4m,
∴抛物线顶点M的坐标为(1,-4m);(2分)
∵抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,
∴当y=0时,mx2-2mx-3m=0,
∵m>0,
∴x2-2x-3=0;
解得x1=-1,x2=3,
∴A、B两点的坐标为(-1,0)、(3,0).(4分)

(2)当x=0时,y=-3m,
∴点C的坐标为(0,-3m).
.(5分)
过点M作MD⊥x轴于点D,则OD=1,BD=OB-OD=2,
MD=|-4m|=4m.
∴S△BCM=S△BDM+S梯形OCMD-S△OBC
=
=
=3m.(7分)
∴S△BCM:S△ABC=1:2,(8分)
故答案为:

(3)存在使△BCM为直角三角形的抛物线;
过点C作CN⊥DM于点N,则△CMN为Rt△,CN=OD=1,DN=OC=3m,
∴MN=DM-DN=m.
∴CM2=CN2+MN2=1+m2
在Rt△OBC中,BC2=OB2+OC2=9+9m2
在Rt△BDM中,BM2=BD2+DM2=4+16m2
①如果△BCM是Rt△,且∠BMC=90°,那么CM2+BM2=BC2
即1+m2+4+16m2=9+9m2
解得
∵m>0,∴
∴存在抛物线y=x2-x-使得△BCM是Rt△;(10分)
②如果△BCM是Rt△,且∠BCM=90°,那么BC2+CM2=BM2
即9+9m2+1+m2=4+16m2
解得m=±1,
∵m>0,
∴m=1;
∴存在抛物线y=x2-2x-3,使得△BCM是Rt△;
③如果△BCM是Rt△,且∠CBM=90°,那么BC2+BM2=CM2
即9+9m2+4+16m2=1+m2,整理得,此方程无解;
∴以∠CBM为直角的直角三角形不存在;
综上所述,存在抛物线y=x2-x-和y=x2-2x-3,使得△BCM是Rt△.(12分)
点评:此题考查了二次函数图象与坐标轴交点坐标的求法、图形面积的求法、勾股定理、直角三角形的判定等知识;需要注意的是(3)题中,由于直角三角形的直角顶点不确定,一定要分类讨论,以免漏解.
练习册系列答案
相关习题

科目:初中数学 来源:2010年四川省内江市中考数学试卷(解析版) 题型:解答题

(2010•内江)如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年四川省内江市中考数学试卷(解析版) 题型:解答题

(2010•内江)如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D.
(1)求证:AD平分∠BAC.
(2)若AC=3,AE=4.
①求AD的值;②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:2010年四川省内江市中考数学试卷(解析版) 题型:填空题

(2010•内江)如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:AF的值为   

查看答案和解析>>

科目:初中数学 来源:2010年四川省内江市中考数学试卷(解析版) 题型:选择题

(2010•内江)如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )

A.
B.
C.2.5
D.2.3

查看答案和解析>>

同步练习册答案