【题目】如图,已知点A、B以及直线l,AE⊥l,垂足为点E.
(1)过点B作BF⊥l,垂足为点F;
(2)在直线l上求作一点C,使CA=CB;
(要求:第(1)、(2)小题用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)
(3)在所作的图中,连接CA、CB,若∠ACB=90°,求证:△AEC≌△CFB.
【答案】(1)详见解析;(2)详见解析;(3)详见解析;
【解析】
(1)利用尺规作图法,任取一点,使点在点B的两侧,以B点为圆心,B点到该点的长为半径画弧,交直线于两点,再分别以这两点为圆心,以大于两点一半距离为半径画弧,两弧相交于一点,连接点B与该点与直线l交于点F,即为所求点;
(2)利用尺规作图法,在线段AB的两端点用同一半径画弧,在线段的两旁各得一个交点,将此两交点连接起来,这个连线即为线段的垂直平分线,与直线l交于点C,即为所求点;
(3)首先由AE⊥l,得出∠AEC=90°,∠1+∠2=90°,再由∠ACB=90°,∠3+∠2=90°,得出∠1=∠3,即可判定△AEC≌△CFB.
(1)解:如图,直线BF就是要求作的垂线;
(2)解:如图,点C就是所要求作的点;
(3)证明:∵AE⊥l,
∴∠AEC=90°,∠1+∠2=90°.
∵∠ACB=90°,
∴∠3+∠2=90°.
∴∠1=∠3,
在△AEC和△CFB中
∴△AEC≌△CFB (AAS).
科目:初中数学 来源: 题型:
【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE=α,直线AE与BD交于点F.
(1)如图1所示,
①求证AE= BD
②求∠AFB (用含α的代数式表示)
(2)将图1中的△ACD绕点C顺时针旋转某个角度(交点F至少在BD、AE中的一条线段上),得到如图2所示的图形,若∠AFB= 150°,请直接写出此时对应的α的大小(不用证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格上有一个△DEF.
(1)画出△DEF关于直线HG的轴对称图形(不写画法);
(2)画EF边上的高(不写画法);
(3)若网格上的最小正方形边长为1,则△DEF的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.
(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出AC、CE、CD之间存在的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,如此进行下去,直至得到C10,若点P(28,m)在第10段抛物线C10上,则m的值为( )
A. 1 B. ﹣1 C. 2 D. ﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0,其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com