精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点AB以及直线lAEl,垂足为点E

1)过点BBFl,垂足为点F

2)在直线l上求作一点C,使CACB

(要求:第(1)、(2)小题用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)

3)在所作的图中,连接CACB,若∠ACB90°,求证:△AEC≌△CFB

【答案】1)详见解析;(2)详见解析;(3)详见解析;

【解析】

1)利用尺规作图法,任取一点,使点在点B的两侧,以B点为圆心,B点到该点的长为半径画弧,交直线于两点,再分别以这两点为圆心,以大于两点一半距离为半径画弧,两弧相交于一点,连接点B与该点与直线l交于点F,即为所求点;

2)利用尺规作图法,在线段AB的两端点用同一半径画弧,在线段的两旁各得一个交点,将此两交点连接起来,这个连线即为线段的垂直平分线,与直线l交于点C,即为所求点;

3)首先由AEl,得出∠AEC90°,∠1+290°,再由∠ACB90°,∠3+290°,得出∠1=∠3,即可判定△AEC≌△CFB.

1)解:如图,直线BF就是要求作的垂线;

2)解:如图,点C就是所要求作的点;

3)证明:∵AEl

∴∠AEC90°,∠1+290°

∵∠ACB90°

∴∠3+290°

∴∠1=∠3

在△AEC和△CFB

∴△AEC≌△CFB AAS).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别以RtABC的直角边AC及斜边AB向外作等边ACD,等边ABE已知BAC=30°,EFAB,垂足为F,连接DF

(1)试说明AC=EF;

(2)求证:四边形ADFE是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若直角三角形的两条直角边的长分别是,则此直角三角形外接圆半径为________,内切圆半径为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C为线段AB上一点,分别以ACBC为边在线段AB同侧作△ACD和△BCE,CA=CDCB=CE,∠ACD=BCE=α,直线AEBD交于点F.

1)如图1所示,

①求证AE= BD

②求∠AFB (用含α的代数式表示)

2)将图1中的△ACD绕点C顺时针旋转某个角度(交点F至少在BDAE中的一条线段上),得到如图2所示的图形,若∠AFB= 150°,请直接写出此时对应的α的大小(不用证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中ab,c分别为ABC三边的长.

(1)如果x=-1是方程的根,试判断ABC的形状,并说明理由;

(2)如果方程有两个相等的实数根,试判断ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格上有一个DEF

1)画出DEF关于直线HG的轴对称图形(不写画法);

2)画EF边上的高(不写画法);

3)若网格上的最小正方形边长为1,则DEF的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC为等边三角形,点D为直线BC上的一动点(D不与BC重合),以AD为边作等边△ADE(顶点ADE按逆时针方向排列),连接CE

(1)如图1,当点D在边BC上时,求证:①BDCE②ACCE+CD

(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论ACCE+CD是否成立?若不成立,请写出ACCECD之间存在的数量关系,并说明理由;

(3)如图3,当点D在边BC的反向延长线上且其他条件不变时,补全图形,并直接写出ACCECD之间存在的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,如此进行下去,直至得到C10,若点P(28,m)在第10段抛物线C10上,则m的值为(  )

A. 1 B. ﹣1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0,其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案