B
分析:连接AC、BD,根据等腰梯形的性质得出AC=BD,根据三角形的中位线定理得到EH∥AC,EH=

AC,EF=

BD,FG∥AC,FG=

AC,推出EF=EH和平行四边形EFGH,即可推出答案.
解答:

解:连接AC、BD,
∵等腰梯形ABCD,AD∥BC,
∴AC=BD,
∵E、H分别是AD、CD的中点,
∴EH∥AC,EH=

AC,
同理EF=

BD,FG∥AC,FG=

AC,
∴EF=EH,EH=FG,EH∥FG,
∴四边形EFGH是平行四边形,
∴平行四边形EFGH是菱形,
故选B.
点评:本题主要考查对等腰梯形的性质和判定,平行四边形的判定,菱形的判定,三角形的中位线定理,直角梯形,矩形的判定等知识点的理解和掌握,能求出平行四边形EFGH和EF=EH是解此题的关键.