精英家教网 > 初中数学 > 题目详情
如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.
(1)当△BEF是等边三角形时,求BF的长;
(2)求y与x的函数解析式,并写出它的定义域;
(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.
(1)当△BEF是等边三角形时,∠ABE=30°.
∵AB=12,
∴AE=4
3

∴BF=BE=8
3


(2)作EG⊥BF,垂足为点G,

根据题意,得EG=AB=12,FG=y-x,EF=y,
∴y2=(y-x)2+122
∴所求的函数解析式为y=
x2+144
2x
(0<x<12).


(3)∵∠AEB=∠FBE=∠FEB,
∴点A'落在EF上,
∴A'E=AE,∠BA'F=∠BA'E=∠A=90,
∴要使△A'BF成为等腰三角形,必须使A'B=A'F.
而A'B=AB=12,A'F=EF-A'E=BF-A'E,
∴y-x=12.
x2+144
2x
-x=12.
整理得x2+24x-144=0,
解得x=-12±12
2

经检验:x=-12±12
2
都原方程的根,
x=-12-12
2
不符合题意,舍去,
当AE=12
2
-12
时,△A'BF为等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图①,正方形ABCD中,∠FOE=90°,顶点O与D点重合,交直线BC于E,交直线BA于F.
(1)求证:OF=OE;
(2)如图②,若O点在射线BD上运动,其它条件不变,上述结论是否仍然成立?画出图形,直接写出结论;
(3)如图③,O为正方形ABCD对角线的中点,∠FOE=90°且绕点O旋转,交BC、CD边于F、E点.(1)中的结论是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是(  )
A.BE=AFB.∠DAF=∠BEC
C.∠AFB+∠BEC=90°D.AG⊥BE

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S1=1,按上述方法所作的正方形的面积依次为S2,S3…,Sn(n为正整数),那么第8个正方形的面积S8=(  )
A.26B.27C.28D.29

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积为(  )
A.
1
4
B.
3
-1
4
C.
1
8
D.
2
3
-1
8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于E.
(1)求证:∠DEF=∠CBE;
(2)请找出图中与EB相等的线段(不另添加辅助线和字母),并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD中,DEAC,DE交BC的延长线于E,若AB=2厘米,则下列结论错误的是(  )
A.四边形ACED是平行四边形
B.四边形ACED的面积是4平方厘米
C.DO=1厘米
D.∠DAE=22.5°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

电力公司给四个村庄改造电网,这四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图,图中的实线部分,请你帮助计算一下,哪种架设方案最省电线?(以下数据可供参考:
2
=1.414
3
=1.732
5
=2.236

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?(  )
A.2B.3C.12-4
3
D.6
3
-6

查看答案和解析>>

同步练习册答案