精英家教网 > 初中数学 > 题目详情
如图,O是△ABC的外接圆的圆心,∠ABC=60°,BF,CE分别是AC,AB边上的高且交于点H,CE交⊙O于M,D,G分别在边BC,AB上,且BD=BH,BG=BO,下列结论:①∠ABO=∠HBC;②AB•BC=2BF•BH;③BM=BD;④△GBD为等边三角形,其中正确结论的序号是( )
A.①②B.①③④C.①②④D.①②③④
D
①,延长AO交圆于点N,连接BN,可证明∠ABO=∠HBC.因此①正确;
②原式可写成=,无法直接用相似来求出,那么可通过相等的比例关系式来进行转换,不难发现三角形BEC中,∠ABC=60°,那么BC和BE存在倍数关系,即BC=2BE,因此如果证得=,可发现这个比例关系式正好是相似三角形BEH和BAF的两组对应线段,因此本题的结论也是正确的.
③要证MB=BD,先看与BD相等的线段有哪些,不难通过相似三角形ABN和BFC(一组直角,∠OBA=∠OAB=∠FBC)得出,将这个结论和②的结论进行置换即可得出:BD=BO=BH=BG,因此可证MB和圆的半径相等即可得出BM=BD的结论.如果连接NC,在三角形ANC中∠ANC=∠ABC=60°,因此AN=2NC,NC就是半径的长.通过相似三角形BME和CAE可得出,而在直角三角形BEC中,BE:EC=tan30°,而在直角三角形ANC中,NC:AC=tan30°,因此,即可得出BM=NC=BO=BD.因此该结论也成立.
④在③中已经得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等边三角形.本结论也成立.
因此四个结论都成立,
解:①延长AO交圆于点N,连接BN,则∠ABN=90°,又∠ACB=∠BNA,∠ABO=∠BAO,所以∠ABO=∠HBC.因此①正确;
②原式可写成=,∠ABC=60°,那么BC=2BE,因此=,所以本题的结论也是正确的.
③∵△ABN∽△BFC(一组直角,∠OBA=∠OAB=∠FBC)∴,BD=BO=BH=BG,BM=BD.
连接NC,在三角形ANC中∠ANC=∠ABC=60°,∴AN=2NC,BE:EC=tan30°,
在直角三角形ANC中,NC:AC=tan30°,,∴BM=NC=BO=BD.
因此该结论也成立.
④在③中已经得出了BD=BG=BO=BH,而∠ABC=60°,因此三角形BGD是等边三角形.本结论也成立.
因此四个结论都成立,
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.
(1)求证:CB∥PD;
(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在⊙O中,直径CD垂直于弦AB于点E,连接OB、CB,已知⊙O的半径为2,AB= ,则∠BCD=     度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,现有一个圆心角为90°,半径为16cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

把一个圆心为O,半径为r的小圆面积增加一倍,两倍,三倍,分别得到如图所示的四个圆(包括原来的小圆),则这四个圆的周长之比(按从小到大顺序排列)是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线l与⊙O交于不同的两点E,F,CD是⊙O的直径,CA⊥l,DB⊥l,垂足分别为A,B.若AB=7,BD-AC=1,AE=1,试问在线段AB上是否存在点P,使得以点P,A,C为顶点的三角形与以点P,B,D为顶点的三角形相似?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.
下列结论正确的是    (写出所有正确结论的序号)
①△CPD∽△DPA;
②若∠A=30°,则PC=BC;
③若∠CPA=30°,则PB=OB;
④无论点P在AB延长线上的位置如何变化,∠CDP为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为(  )
A.B.3 C.2D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )
 
A.30°        B.45°        C.60°        D.40°

查看答案和解析>>

同步练习册答案