精英家教网 > 初中数学 > 题目详情
已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=(  )
A、
1005
2011
B、
2011
2012
C、
2010
2011
D、
2011
4024
分析:依次求出S1、S2、Sn,就发现规律:Sn=
1
n(n+1)
,然后求其和即可求得答案.注意
1
n(n+1)
=
1
n
-
1
n+1
解答:精英家教网解:当n=1时,y=-
1
2
x+
2
2

此时:A(0,
2
2
),B(
2
,0),
∴S1=
1
2
×
2
×
2
2
=
1
1×2

同理:S2=
1
2
×
2
2
×
2
3
=
1
2×3


Sn=
1
2
×
2
n
×
2
n+1
=
1
n(n+1)

∴S2011=
1
2011×2012

∴S1+S2+S3+…+S2011=
1
1×2
+
1
2×3
+…+
1
2011×2012
=1-
1
2
+
1
2
-
1
3
+…+
1
2011
-
1
2012
=1-
1
2012
=
2011
2012

故选B.
点评:此题考查了一次函数的知识.注意发现规律:Sn=
1
n(n+1)
,是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知两条直线y=
n
n+1
x+
2
n+1
y=-
n
n+1
x+
2
n+1
(n为正整数),设它们与x轴围成的图形面积为Sn(n=1,2,…,2010),求S1+S2+…+S2010的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:直线y=-
n
n+1
x+
2
n+1
(n为正整数)与两坐标轴围成的三角形面积为Sn,则S1+S2+S3+…+S2011=
2011
2012
2011
2012

查看答案和解析>>

科目:初中数学 来源: 题型:

根据题意结合图形填空:
(1)如图1:
①如果∠2=∠3.,那么
m
m
n
n
,理由是
同位角相等,两直线平行
同位角相等,两直线平行

②如果∠3=∠4.,那么
a
a
b
b
,理由是
内错角相等,两直线平行
内错角相等,两直线平行

③如果∠1与∠4满足条件
∠1+∠4=180°
∠1+∠4=180°
时,m∥n.理由是
同旁内角互补,两直线平行
同旁内角互补,两直线平行

④如果
a
a
b
b
时,∠1+∠2=180°,理由是
两直线平行,同旁内角互补
两直线平行,同旁内角互补

(2)已知:如图2,∠1=70°,∠3=70°,将求∠2的度数的理由填写完整.
解:因为∠1=∠3=70°(已知)
所以
AB
AB
CD
CD
;所以
∠2
∠2
+
∠3
∠3
=
180°
180°
,因为∠3=70°所以∠2=
110°
110°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,已知方形环四周的宽度相等,如图,若直线l分别交方形环的邻边AD、A'D'、D'C'、DC于点M、M'、N'、N,且M为AD的中点,DN=3CN,则线段MM'与NN'的长度之比为
 

查看答案和解析>>

同步练习册答案