【题目】如图,正五边形的边长为2,连对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,则MN= .
【答案】3﹣
【解析】解:∵∠BAE=∠AED=108°,
∵AB=AE=DE,
∴∠ABE=∠AEB=∠EAD=36°,
∴∠AME=180°﹣∠EAM﹣∠AEM=108°,
∵∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°,
∴∠AEN=∠ANE,
∴AE=AN,
同理DE=DM,
∴AE=DM,
∵∠EAD=∠AEM=∠ADE=36°,
∴△AEM∽△ADE,
∴ ,
∴AE2=AMAD
∴AN2=AMAD;
∴22=(2﹣MN)(4﹣MN),
∴MN=3﹣ ;
所以答案是:3﹣ .
【考点精析】解答此题的关键在于理解正多边形和圆的相关知识,掌握圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等.
科目:初中数学 来源: 题型:
【题目】阅读理解:
小聪在解方程组时,发现方程组中①和②之间存在一定的关系,他发现了一种“整体代换”法,具体解法如下:
解:将方程②变形为:
即
把方程①代入方程③得:解得
把代入方程①得
∴方程组的解是
(1)模仿小聪的解法,解方程组
(2)已知x,y满足方程组,解答:
(ⅰ)求的值;
(ⅱ)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度数;
(2)∠DAE的度数;
(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).
(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;
(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠ABN,BE的反向延长线与∠BAO的平分线交于点C.
(1)当点A,B移动后,∠BAO=45°时,∠C=________;
(2)当点A,B移动后,∠BAO=60°时,∠C=________;
(3)由(1)(2)猜想∠C是否随点A,B的移动而发生变化,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过建设者三年的努力,贯穿四川的“遂内高速”正式通车,已知原来从遂宁到内江的公路长150km,高速公路路程比公路缩短30km,一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,用时比原来减少1小时,求小车原来的平均速度和走高速的平均速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com