【题目】如图,,,,则下列结论中:①;②;③;④;正确的是( )
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
延长CD交AE于点F,由,得:∠ABD=∠EBC=90°,BD=BC,AB=EB,即可判断①;延长AD交CE于点M,由,得∠BAD=∠BEC,进而得到∠AMC=90°,即可判断②;根据勾股定理,求出CD和AE的值,即可判断③;由∠EAD+∠BAD=45°,∠BEC+∠ECD=∠BDC=45°,即可判断④.
延长CD交AE于点F,
∵
∴∠ABD=∠EBC=90°,BD=BC,AB=EB,
∴∠EDF=∠BDC=∠BCD=45°,∠AEB=∠EAB=45°,
∴∠EFD=180°-45°-45°=90°,
∴,
故①正确;
延长AD交CE于点M,
∵
∴∠BAD=∠BEC,
∵∠BEC+∠BCE=180°-∠EBC=180°-90°=90°,
∴∠BAD +∠BCE=90°,
∴∠AMC=90°,即:,
故②正确;
∵在等腰RtBCD中, ,
∴,
同理:,
∴,
故③错误;
∵在等腰RtABE中,∠EAD+∠BAD=45°,
又∵∠BEC+∠ECD=∠BDC=45°,∠BAD=∠BEC,
∴,
故④正确.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.
(1)求证:四边形ADCE是平行四边形;
(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数(x>0)的图象经过点A(2 ,1),直线AB与反比例函数图象交与另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
(1)求反比例函数的解析式;
(2)求tan∠DAC的值及直线AC的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品 | 甲 | 乙 |
进价(元/件) | ||
售价(元/件) | 200 | 100 |
若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为件(),设销售完50件甲、乙两种商品的总利润为元,求与之间的函数关系式,并求出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b的图象分别与x、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.
(1)求该反比例函数的解析式;
(2)求线段CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.
(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG.若AG平分∠CAD,求证:AH=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.
(1)求证:PB是⊙O的切线;
(2)当OB=3,PA=6时,求MB,MC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
(1)求证:EB=GD;
(2)若AB=5,AG=2,求EB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com