【题目】如图1,在平面直角坐标系中,已知点,点,为线段上一点,且满足.
(1)求直线的解析式及点的坐标;
(2)如图2,为线段上一动点,连接,与交于点,试探索是否为定值?若是,求出该值;若不是,请说明理由;
(3)点为坐标轴上一点,请直接写出满足为等腰三角形的所有点的坐标.
【答案】(1);(2)是定值,定值为2;(3),, ,,,,
【解析】
(1)利用“待定系数法”可求出解析式,然后过点C作CF⊥OB,利用等腰三角形的性质求出点C横坐标,再利用解析式求出点C坐标即可;
(2)先利用勾股定理计算出AB、OC长,从而证明OC=BC=AC,再利用“等边对等角”得到∠CAO=∠AOC,最后利用三角形外角定理即可得到结果;
(3)分BP=BC、CP=CB、PB=PC三种情况讨论,分别进行计算即可.
解:(1)设:,
代入点、可得,
解得:,
即:,
设,如图作,
∵,,
∴,
∴,即,
将点代入可得:,
∴;
(2)是定值,定值为2.
由(1)可得,,
∴在中,,
又∵在,,,
∴,
∴,
∴,
∴,
∴,
又∵,
∴,
∴,
又∵,
∴;
(3)①BC=BP=时:
当点P在x轴上时,OP=或,此时,,
当点P在y轴上时,在Rt△OBP中,OP=,此时,,
②CB=CP=时:
由(2)知OC=,
∴CP=OC,此时,
③PB=PC时:
当P在x轴上时,设P(x,0),则,,
∴,解得,
此时,
当P在y轴上时,设P(0,y),则,,
∴,解得,
此时,
综上,,,,,,,.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在用描点法画二次函数y=x2+bx+c图像时,由于粗心他算错了一个y值,列出了下面表格:
x | … | -1 | 0 | 1 | 2 | 3 | … |
y=x2+bx+c | … | 5 | 3 | 2 | 3 | 6 | … |
(1)请你帮他指出这个错误的y值,并说明理由;
(2)若点M(m,y1),N(m+4,y2)在二次函数y=x2+bx+c图像上,且m>-1,试比较y1与y2的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:
甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC= °,并简要说明圆内接五边形ABCDE为正五边形的理由;
(2)如图2,请证明丙同学构造的六边形各内角相等;
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A.AB∥CD,AD∥BCB.OA=OC,OB=OD
C.AD=BC,AB∥CDD.AB=CD,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).
(1)画出△ABC关于x对称的△A1B1C1;
(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并求出△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了体育活动更好的开展,决定购买一批篮球和足球.据了解:篮球的单价比足球的单价多20元,用1000元购买篮球的个数与用800元购买足球的个数相同.
(1)篮球、足球的单价各是多少元?
(2)若学校打算购买篮球和足球的数量共100个,且购买的总费用不超过9600元,问最多能购买多少个篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD交于点O,DE⊥AB于点E,连接OE,若DE=,BE=1,则∠AOE的度数是( )
A.30°B.45°C.60°D.75°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com