精英家教网 > 初中数学 > 题目详情

【题目】为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则长为______时,能围成的矩形区域的面积最大.

【答案】15m

【解析】

根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE2BE,设BEa,则有AE2a,表示出a2a,进而表示出Sx的关系式,并求出x的范围即可;再利用二次函数的性质解答.

解:如图,三块矩形区域的面积相等,
∴矩形AEFD面积是矩形BCFE面积的2倍,
AE2BE
BCxBEFCa,则AEHGDF2a
DFFCHGAEEBEFBC60,即8a2x60

∵a>0,

∴矩形区域ABCD的面积S=

∴当x=时,S最大,

故答案为:15m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)

1)这次调查中,样本容量为 ,请补全条形统计图;

2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用画树状图列表的方法写出分析过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在矩形ABCD中,对角线ACBD相交于点O,过点CBD的平行线,过点DAC的平行线,两线交于点P

求证:四边形CODP是菱形.

AD6AC10,求四边形CODP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y轴交于点A,它的顶点为点B

1)点A的坐标为______,点B的坐标为______(m表示)

2)已知点M(-64),点N(34),若抛物线与线段MN恰有一个公共点,结合函数图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知圆O是正六边形ABCDEF外接圆,直径BE=8,点GH分别在射线CDEF上(点G不与点CD重合),且∠GBH=60°,设CG=xEH=y

1)如图①,当直线BG经过弧CD的中点Q时,求∠CBG的度数;

2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;

3)联结AHEG,如果△AFH与△DEG相似,求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数yaxaa为常数)的图象与y轴相交于点A,与函数x0)的图象相交于点Bt1).

1)求点B的坐标及一次函数的解析式;

2)点P的坐标为(mm)(m0),过PPEx轴,交直线AB于点E,作PFy轴,交函数x0)的图象于点F

①若m2,比较线段PEPF的大小;

②直接写出使PEPFm的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴于点,交轴于,抛物线经过点,且与轴交于另一点

1)求抛物线的解析式;

2)点为第一象限内抛物线上一动点,过点轴于点,交直线于点,设点的横坐标为

①过点于点,设的长度为,请用含的式子表示,并求出当取得最大值时,点的坐标.

②在①的条件下,当直线到直线的距离等于时,请直接写出符合要求的直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将两幅不完整的图补充完整;

(3)若居民区有8000人,请估计爱吃D粽的人数;

(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

同步练习册答案