【题目】解下列方程:
(1)3x2+8x﹣3=0(用配方法)
(2)4x2+1=4x(用公式法)
(3)2(x﹣3)2=x2﹣9(用因式分解法)
(4)x2+5x﹣6=0(用适当的方法)
【答案】(1)x=或x=﹣3;(2);(3)x=3或x=9;(4)x=﹣6或x=1.
【解析】
(1)根据配方法解方程的步骤依次计算可得;
(2)根据公式法求解可得;
(3)利用因式分解法求解可得;
(4)利用因式分解法求解可得.
(1)∵3x2+8x=3,
∴x2+x=1,
则x2+x+=1+,即(x+)2=,
则x+=±,
解得x=或x=﹣3;
(2)整理得4x2﹣4x+1=0,
∵a=4,b=﹣4,c=1,
∴△=(﹣4)2﹣4×4×1=0,
则x==2,
;
(3)∵2(x﹣3)2=(x+3)(x﹣3),
∴(x﹣3)(x﹣9)=0,
则x﹣3=0或x﹣9=0,
解得x=3或x=9;
(4)∵x2+5x﹣6=0,
∴(x+6)(x﹣1)=0,
则x+6=0或x﹣1=0,
解得x=﹣6或x=1.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为( )
A. 8S B. 9S C. 10S D. 11S
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.
(1)求DE与水平桌面(AB所在直线)所成的角;
(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).
(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰梯形ABCD中,AD∥BC,AD=3,AB=CD=4,BC=5,∠B的平分线交DC于点E,交AD的延长线于点F.
(1)如图(1),若∠C的平分线交BE于点G,写出图中所有的相似三角形(不必证明);
(2)在(1)的条件下求BG的长;
(3)若点P为BE上动点,以点P为圆心,BP为半径的⊙P与线段BC交于点Q(如图(2)),请直接写出当BP取什么范围内值时,①点A在⊙P内;②点A在⊙P内而点E在⊙P外.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 A,B 的坐标分别为(1,4)和(4,4), 抛物线 y=a(x﹣m)2+n 的顶点在线段 AB 上运动(抛物线随顶点一起平移),与 x 轴交于 C、D 两点(C 在 D 的左侧),点 C 的横坐标最小值为﹣3, 则点 D 的横坐标最大值为( )
A.﹣3B.1C.5D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为5的正方形ABCD中,点E在BC边上,连接AE,过D作DF//AE交BC的延长线于点F,过点C作CG⊥DF于点G,延长AE、GC交于点H,点P是线段DG上的任意一点(不与点D、点G重合),连接CP,将△CPG沿CP翻折得到,连接. 若CH=1,则长度的最小值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com