精英家教网 > 初中数学 > 题目详情

【题目】解下列方程:

13x2+8x30(用配方法)

24x2+14x(用公式法)

32x32x29(用因式分解法)

4x2+5x60(用适当的方法)

【答案】1xx=﹣3;(2;(3x3x9;(4x=﹣6x1

【解析】

1)根据配方法解方程的步骤依次计算可得;
2)根据公式法求解可得;
3)利用因式分解法求解可得;
4)利用因式分解法求解可得.

1)∵3x2+8x3

x2+x1

x2+x+1+,即(x+2

x+=±

解得xx=﹣3

2)整理得4x24x+10

a4b=﹣4c1

∴△=(﹣424×4×10

x2

3)∵2x32=(x+3)(x3),

∴(x3)(x9)=0

x30x90

解得x3x9

4)∵x2+5x60

∴(x+6)(x1)=0

x+60x10

解得x=﹣6x1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,EAD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(  )

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴交于A10),B﹣30)两点.

1)求该抛物线的解析式;

2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;

3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.

(1)求DE与水平桌面(AB所在直线)所成的角;

(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).

(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰梯形ABCD中,ADBCAD3ABCD4BC5,∠B的平分线交DC于点E,交AD的延长线于点F

1)如图(1),若∠C的平分线交BE于点G,写出图中所有的相似三角形(不必证明);

2)在(1)的条件下求BG的长;

3)若点PBE上动点,以点P为圆心,BP为半径的P与线段BC交于点Q(如图(2)),请直接写出当BP取什么范围内值时,AP内;AP内而点EP外.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点 AB 的坐标分别为(14)和(44), 抛物线 yaxm2+n 的顶点在线段 AB 上运动(抛物线随顶点一起平移),与 x 轴交于 CD 两点(C D 的左侧),点 C 的横坐标最小值为﹣3 则点 D 的横坐标最大值为(

A.3B.1C.5D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cx轴交于A-10),B30)两点.

1)求该抛物线的解析式;

2)求该抛物线的对称轴以及顶点坐标;

3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为5的正方形ABCD中,点E在BC边上,连接AE,过D作DF//AE交BC的延长线于点F,过点C作CG⊥DF于点G,延长AE、GC交于点H,点P是线段DG上的任意一点(不与点D、点G重合),连接CP,将△CPG沿CP翻折得到,连接. 若CH=1,则长度的最小值为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角EAD为45°,在B点测得D点的仰角CBD为60°,求这两座建筑物的高度(结果保留根号)

查看答案和解析>>

同步练习册答案