【题目】已知抛物线y1=x2+mx+n,直线y2=2x+1,抛物线y1的对称轴与直线y2的交点为点A,且点A的纵坐标为5.
(1)求m的值;
(2)若点A与抛物线y1的顶点B的距离为4,求抛物线y1的解析式;
(3)若抛物线y1与直线y2只有一个公共点,求n的值.
【答案】(1)m=﹣4;(2)y1=x2﹣4x+5或y1=x2﹣4x+13;(3)n=10.
【解析】
(1)根据题意得到点A的坐标为(2,5),根据抛物线的对称轴公式即可得到结论;
(2)根据已知条件得到点B的坐标为(2,1)或(2,9),根据顶点坐标公式列方程即可得到结论;
(3)根据抛物线y1与直线y2只有一个公共点得到的一元二次方程根的判别式为0,解关于n的方程即可得到结论.
(1)∵点A的纵坐标为5,点A在直线y2=2x+1上,
∴5=2x+1,得x=2,
∴点A的坐标为(2,5),
∵物线y1的对称轴与直线y2的交点为点A,抛物线y1=x2+mx+n,
∴﹣=2,得m=﹣4;
(2)∵点A与抛物线y1的顶点B的距离为4,点A的坐标为(2,5),
∴点B的坐标为(2,1)或(2,9),
∴=1或9,
解得:n=5或13,
∴抛物线y1的解析式的解析式为:y1=x2﹣4x+5或y1=x2﹣4x+13;
(3)解得,x2﹣6x+n﹣1=0,
∵抛物线y1与直线y2只有一个公共点,
∴△=36﹣4n+4=0,
解得n=10.
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,OA=3,OC=4,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,作直线DE.
(1)当点D运动到BC中点时,求k的值;
(2)求的值;
(3)连接DA,当△DAE的面积为时,求k值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.
(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?
(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】类比特殊四边形的学习,我们可以定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
探索体验
(1)如图①,已知四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)如图②,若AB=AD=a,CB=CD=b,且a≠b,那么四边形ABCD是“等对角四边形”吗?试说明理由.
尝试应用
(3)如图③,在边长为6的正方形木板ABEF上裁出“等对角四边形”ABCD,若已经确定DA=4,∠DAB=60°,是否在正方形ABEF内(包括边上)存在一点点C,使四边形ABCD以∠DAB=∠BCD为等对角的四边形的面积最大?若存在,试求出四边形ABCD的最大面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线是第一、三象限的角平分线.
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:___________、___________;
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为___________(不必证明);
(3)已知两点、,试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,求QD+QE的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com