分析 证出AC=BD,由SAS证明△ACE≌△DBF,由全等三角形的性质得出CE=BF,∠ACE=∠DBF,得出CE∥BF,即可得出结论.
解答 证明:∵AB=CD,
∴AB+BC=CD+BC,即AC=BD,
在△ACE和△DBF中,$\left\{\begin{array}{l}{AC=BD}&{\;}\\{∠A=∠D}&{\;}\\{AE=DF}&{\;}\end{array}\right.$,
∴△ACE≌△DBF(SAS),
∴CE=BF,∠ACE=∠DBF,
∴CE∥BF,
∴四边形BFCE是平行四边形.
点评 此题主要考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
纸环数x(个) | 1 | 2 | 3 | 4 | … |
彩纸链长度y( cm) | 19 | 36 | 53 | 70 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com