精英家教网 > 初中数学 > 题目详情

【题目】已知函数

抛物线的开口向____ 、对称轴为直线_ _、顶点坐标__ _

___ _时,函数有最___ 值,是__ _

_ _ ______时,的增大而增大;当____ __时,的增大而减小;

该函数图象可由的图象经过怎样的平移得到的?

【答案】 ;大; 向左个,向上平移个单位

【解析】

1),(2),(3)由于是二次函数,由此可以确定函数的图像的形状,根据二次项系数可以确定开口方向,根据抛物线的顶点式解析式可以确定其顶点的坐标,对称轴及增减性;

4)根据左加右减,上加下减可得出答案.

解:由二次函数可得

1)抛物线的开口方向向下,对称轴为直线x=-2,顶点坐标为(-2,9).

2)当x=-2时,函数y有最大值,是9.

3)当x-2时,函数yx的增大而增大,当x-2时,函数yx的增大而减小.

4)函数的图像先向左平移2个单位,再向上平移9个单位即可得到.

故答案为 ;大; 向左个,向上平移个单位.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ADO的弦,ACO直径,O的切线BDAC的延长线于点B,切点为D,∠DAC=30°.

(1)求证:ADB是等腰三角形;

(2)若BC= ,则AD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线l:x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作x轴于另一点D,交线段AB于点E,连结OE并延长交于点F.

求直线l的函数表达式和的值;

如图2,连结CE,当时,

求证:

求点E的坐标;

当点C在线段OA上运动时,求的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).

1)求本次被调查的学生人数;

2)补全条形统计图;

3)在扇形统计图中,“篮球”部分所对应的圆心角度数为__

4)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为小时,两车之间的距离为千米,图中折线表示之间的函数图象.当快车到达甲地时,慢车离甲地的距离为__________千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了学生阳光体育运动,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:

成绩统计分析表

1)张明第2次的成绩为__________秒;

2)请补充完整上面的成绩统计分析表;

3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB的直径,点PBA的延长线上,PD于点D,过点B,交PD的延长线于点C,连接AD并延长,交BE于点E

(Ⅰ)求证:AB=BE

(Ⅱ)连结OC,如果PD=2,∠ABC=60°,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的内接正十边形的一边,平分于点,则下列结论正确的有(

;②;③;④

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案