精英家教网 > 初中数学 > 题目详情
8.设直线nx+(n+1)y=$\sqrt{2}$(n为自然数)与两坐标轴围成的三角形面积为Sn,则S1+S2+…+S2016的值为$\frac{2016}{2017}$.

分析 先利用坐标轴上点的坐标特征求出直线与x轴和y轴的坐标,则利用三角形面积公式得到Sn=$\frac{1}{n(n+1)}$,再分别计算出S1,S2,S3,S2015,然后利用$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$求它们的和.

解答 解:当x=0时,y=$\frac{\sqrt{2}}{n+1}$,则直线与y轴的交点坐标为(0,$\frac{\sqrt{2}}{n+1}$),
当y=0时,x=$\frac{\sqrt{2}}{n}$,则直线与x轴的交点坐标为($\frac{\sqrt{2}}{n}$,0),
所以Sn=$\frac{1}{2}$•$\frac{\sqrt{2}}{n}$•$\frac{\sqrt{2}}{n+1}$=$\frac{1}{n(n+1)}$,
当n=1时,S1=$\frac{1}{1×2}$,
当n=2时,S2=$\frac{1}{2×3}$,
当n=3时,S3=$\frac{1}{3×4}$,

当n=2016时,S2016=$\frac{1}{2016×2017}$,
所以S1+S2+S3+…+S2015=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2016×2017}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2016}$-$\frac{1}{2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.

点评 本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式,解决此类问题时求出直线与坐标轴的交点坐标.熟练运用$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$是解决此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα=$\frac{角α的邻边}{角α的对边}$=$\frac{AC}{BC}$,根据上述角的余切定义,解下列问题:
(1)ctan30°=$\sqrt{3}$;
(2)如图,已知tanA=$\frac{3}{4}$,其中∠A为锐角,试求ctanA的值.
(3)已知第一象限内的点A在反比例函数y=$\frac{2}{x}$的图象上,第二象限内的点B在反比例函数y=$\frac{k}{x}$的图象上,且OA⊥OB,ctanA=$\frac{\sqrt{3}}{3}$,直接写出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知EF∥MN,一直角三角板如图放置.∠ACB=90°.
(1)如图1,若∠1=60°,则∠2=30度;
(2)如图2,若∠1=∠B-20°.则∠2=20度;
(3)如图3,延长AC交直线MN于D,GH平分∠CGN,DK平分∠ADN交GH于K,问∠GKD是否为定值,若是求值,不是说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知正方形纸片上有一条线段,可通过折纸得到平行线.方法如下:

试一试
如图,在正方形纸片上有一条线段a和一点P,通过折纸法过点P作出线段a的平行线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,抛物线L:y=-$\frac{1}{2}$(x-1)(x+3)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=$\frac{k}{x}$(k>0,x>0)于点P,且OA•MP=8.
(1)求k的值;
(2)求AB长;
(3)求抛物线L的对称轴与顶点坐标,并求直线MP与L对称轴之间的距离;
(4)当抛物线向右平移3个单位后,其顶点是否落在双曲线上,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.定义:有一组邻边相等的凸四边形叫做“准菱形”,利用该定义完成以下各题:
(1)理解
如图1,在四边形ABCD中,若AB=BC(填一种情况),则四边形ABCD是“准菱形”;
(2)应用
证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)
(3)拓展
如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平面直角坐标系中,点A、B均在函数y=$\frac{k}{x}$(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点A的坐标为(3,2),且⊙A的半径是⊙B的半径的2倍,则点B的坐标为(1,6).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.已知$\sqrt{5.217}$=2.284,$\sqrt{521.7}$=22.84,填空:
(1)$\sqrt{0.05217}$=0.2284,$\sqrt{52170}$=228.4;
(2)若$\sqrt{x}$=0.02284,则x=0.0005217.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,已知,∠A=∠E,AD=EC,若要△ABC≌△EFD,则可添加下列条件的是(  )
A.AB=EFB.AC=EDC.BC=DFD.∠B=∠BDF

查看答案和解析>>

同步练习册答案