精英家教网 > 初中数学 > 题目详情

如图在平面直角坐标系中,坐标原点O,A点坐标为(4,0),B点坐标(-1,0),以AB中点P为圆心,AB为直径作⊙P交y轴正半轴于C点
(1)求经过A、B、C三点抛物线解析式.
(2)M为(1)中抛物线顶点,求直线MC对应函数表达式.
(3)试说明MC与⊙P的位置关系,并说明你的结论.

解:(1)∵A(4,0),B(-1,0),
∴AB=5,半径是PC=PB=PA=
∴OP=-1=
在△CPO中,由勾股定理得:OC==2,
∴C(0,2),
设经过A、B、C三点抛物线解析式是y=a(x-4)(x+1),
把C(0,2)代入得:2=a(0-4)(0+1),
∴a=-
∴y=-(x-4)(x+1)=-x2+x+2,
答:经过A、B、C三点抛物线解析式是y=-x2+x+2.

(2)y=-x2+x+2=-+
M(),
设直线MC对应函数表达式是y=kx+b,
把C(0,2),M()代入得:
解得:k=,b=2,
∴y=x+2,
y=x+2.
答:直线MC对应函数表达式是y=x+2.

(3)MC与⊙P的位置关系是相切,
证明:设直线MC交X轴于D,
当y=0时,0=x+2,
∴x=-,OD=
∴D(-,0),
在△COD中,由勾股定理得:CD2=22+==
PC2===
PD2==
∴CD2+PC2=PD2
∴∠PCD=90°,
∴PC⊥DC,
∵PC为半径,
∴MC与⊙P的位置关系是相切.
分析:(1)求出半径,根据勾股定理求出C的坐标,设经过A、B、C三点抛物线解析式是y=a(x-4)(x+1),把C(0,2)代入求出a即可;
(2)求出M的坐标,设直线MC对应函数表达式是y=kx+b,把C(0,2),M()代入得到方程组,求出方程组的解即可;
(3)根据点的坐标和勾股定理分别求出PC、DC、PD的平方,根据勾股定理的逆定理得出∠PCD=90°,即可求出答案.
点评:本题主要考查对用待定系数法求一次函数、二次函数的解析式,勾股定理及勾股定理的逆定理,解二元一次方程组,二次函数的最值,切线的判定等知识点的连接和掌握,能综合运用这些性质进行推理和计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图在平面直角坐标系中,△AOB的顶点分别为A(2,0),O(0,0),B(0,4).
①△AOC与△AOB关于x轴成轴对称,则C点坐标为
(0,-4)

②将△AOB绕AB的中点D逆时针旋转90°得△EGF,则点A的对应点E的坐标为
(3,3)

③在图中画出△AOC和△EGF,△AOB与△EGF重叠的面积为
1
平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在平面直角坐标系xOy中,点A的坐标为(2,0),以点A为圆心,2为半径的圆与x轴交于O,B两点,C为⊙A上一点,P是x轴上的一点,连接CP,将⊙A向上平移1个单位长度,⊙A与x轴交于M、N,与y轴相切于点G,且CP与⊙A相切于点C,∠CAP=60°.请你求出平移后MN和PO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示点B在抛物线y=ax2+ax-2上.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)将三角板ABC绕顶点A逆时针方向旋转90°到达△AB′C′的位置,请写出点B′坐标
(1,-1)
(1,-1)
,点C′坐标
(2,1)
(2,1)
;判断点B′
,C′
(填“在”或“不”)在(2)中的抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,M为x轴上一点,⊙M交x轴于A、B两点,交y轴于C、D两点,P为
BC
上的一个动点,CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C点坐标;
(2)当点P在
BC
上运动时,线段AQ的长是否改变?若不变,请求出其长度;若改变,请说明理由.(提示:连接AC).
(3)当点P在
BC
上运动时,是否存在这样的点P,使CQ所在直线经过点M?若存在请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案