精英家教网 > 初中数学 > 题目详情

【题目】为深化义务教育课程改革,满足学生的个性化学习需求,某校就学生对知识拓展、体育特长、艺术特长和时间活动四类选课意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题.

(1)求扇形统计图中的m的值,并补全条形统计图;

(2)已知该校800名学生,计划开设实践活动类课程,每班安排20人,问学校开设多少个实践活动课课程的班级比较合理.

【答案】1m=20,补图见解析;(2)开设10实验活动类课程的班级数比较合理.

【解析】

1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;

2)求出实践活动类的总人数,进而可得出结论.

1)总人数=15÷25%=60(人).

A类人数=60-24-15-9=12(人).

12÷60=0.2=20%

m=20

条形统计图如图;

2)∵800×25%=200200÷20=10

∴开设10实验活动类课程的班级数比较合理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,.点从点出发沿路径向终点运动;点点出发沿路径向终点运动.点分别以13的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过.则点运动时间等于____________时,全等。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DFBE.求证:CECF

2)如图2,在正方形ABCD中,EAB上一点,GAD上一点,如果∠GCE45°,请你利用(1)的结论证明:GEBEGD

3)运用(1)(2)解答中所积累的经验和知识,完成下题:

如图3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°ABBCEAB上一点,且∠DCE45°BE4DE="10," 求直角梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分别为△ABC三边的长.

(1)如果方程有两个相等的实数根,试判断△ABC的形状并说明理由;

(2)已知a:b:c=3:4:5,求该一元二次方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于AB两点,连接AP并延长分别交⊙Px轴于点D、点E,连接DC并延长交y轴于点F.若点F的坐标为,点D的坐标为

(1)求证:DC=FC

(2)判断⊙Px轴的位置关系,并说明理由;

(3)求⊙P的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABCD相交于点OOEOF分别是∠BOD、∠AOD的平分线。

(1)DOE的补角是___

(2)若∠BOD=62°,求∠AOE和∠DOF的度数;

(3)判断射线OEOF之间有怎样的位置关系?并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CDAB边上的中线,ECD的中点,过点CAB的平行线交AE的延长线于点F,连接BF

(1) 求证:CFAD

(2) CACB∠ACB90°,试判断四边形CDBF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:

所挂物体的质量(kg)

0

1

2

3

4

5

6

弹簧的长度(cm)

15

15.6

16.2

16.8

17.4

18

18.6

(1)上表反映了哪两个变量之间的关系?哪个是自变量?

(2)写出之间的关系式;

(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?

(4)当所挂物体的质量为11.5kg时,求弹簧的长度。

查看答案和解析>>

同步练习册答案