精英家教网 > 初中数学 > 题目详情
12.无锡某校准备组织学生及学生家长到上海进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上:根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,无锡到上海的火车票价格(部分)如表所示:
运行区间公布票价学生票价
上车站下车站一等座二等座三等座
无锡上海81(元)68(元)51(元)
(1)参加社会实践的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)w与m之间的函数关系式.
(3)按第(2)小题中的购票方案,请你做一个预算,购买这次单程火车票最少要花多少钱?最多要花多少钱?

分析 (1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,根据题意得到方程组:$\left\{\begin{array}{l}{81(3m+n)=17010}\\{68×3m+51n=11220}\end{array}\right.$,求出方程组的解即可;
(2)有两种情况:①当180≤x<210时,学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票,得到解析式:y=51×180+68(x-180)+81(210-x),②当0<x<180时,一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210-x)张,得到解析式是y=-30x+17010;
(3)由(2)小题知,当180≤x<210时,y=-13x+13950和当0<x<180时,y=-30x+17010,分别讨论即可.

解答 解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买三等座学生票,依题意得:$\left\{\begin{array}{l}{81(3m+n)=17010}\\{68×3m+51n=11220}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=10}\\{n=180}\end{array}\right.$,
则2m=20,
答:参加社会实践的老师、家长与学生分别有10人、20人、180人.

(2)解:由(1)知所有参与人员总共有210人,其中学生有180人,
①当180≤x<210时,最经济的购票方案为:
学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.
∴火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),
即y=-13x+13950(180≤x<210),
②当0<x<180时,最经济的购票方案为:
一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210-x)张,
∴火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),
即y=-30x+17010(0<x<180),
答:购买火车票的总费用(单程)y与x之间的函数关系式是y=-13x+13950(180≤x<210)或y=-30x+17010(0<x<180).

(3)由(2)小题知,当180≤x<210时,y=-13x+13950,
∵-13<0,y随x的增大而减小,
∴当x=209时,y的值最小,最小值为11233元,
当x=180时,y的值最大,最大值为11610元.
当0<x<180时,y=-30x+17010,
∵-30<0,y随x的增大而减小,
∴当x=179时,y的值最小,最小值为11640元,
当x=1时,y的值最大,最大值为16980元.
所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元,
答:按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元.

点评 本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识,解题的关键是理解题意,学会构建方程组或一次函数解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.某公司购买了办公用的A、B两种型号护眼台灯共60盏,花费了5160元.已知A型台灯每盏80元,B型台灯每盏100元.则A、B两种型号的护眼台灯各买了多少盏?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系中,△ABC的三个顶点坐标分别为(1,1)、(3,4)、(3,0).
(1)请画出△ABC关于y轴对称的△A1B1C1,若P(a,b)是△ABC内任一点,写出它的对应点P′的坐标.
(2)画出以点O为旋转中心,将△ABC顺时针旋转90°得到△A2B2C2,并写出B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润65元;销售6台A型号和3台B型号计算器,可获利润105元
(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?
(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(-2,-2),( $\sqrt{2}$,$\sqrt{2}$  ),…,都是梦之点,显然梦之点有无数个.
(1)若点P(2,b)是反比例函数y=$\frac{n}{x}$(n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;
(2)⊙O的半径是$\sqrt{2}$,
①求出⊙O上的所有梦之点的坐标;
②已知点 M(m,3),点Q是(1)中反比例函数y=$\frac{n}{x}$图象上异于点P的梦之点,过点Q 的直线l与y轴交于点 A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-2,0),B(1,0),顶点为C,对称轴于x轴交于点M,连接AC,BC,作AD∥BC交对称轴于点D,连接BD,有下列5个结论:①a-b=0;②当-2<x<1时,y>0;③四边形ADBC是菱形;④9a-3b+c>0;⑤c=2a,其中正确的个数是(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,正方形OABC的两边OA,OC分别在x轴上,点D(5,3)在边AB上,以C为中心,把△CDB绕点C顺时针旋转90°,则旋转后点D的对应点D′的坐标是(-2,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.4个红球、6个白球放入一个不透明的盒子里,从中任摸出5个球,恰好红球、白球都摸到,这个事件是(  )
A.必然事件B.不可能发生C.可能发生D.很可能发生

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:
如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.
(1)若∠θ=37°50′,则AB的长约为83.2cm;
(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)
(2)若FG=30cm,∠θ=60°,求CF的长.

查看答案和解析>>

同步练习册答案