精英家教网 > 初中数学 > 题目详情
(2010•大田县)某中学篮球队12名队员的年龄情况如下:
年龄(单位:岁)1415161718
人数14322
则这个队队员年龄的众数和中位数分别是( )
A.15,16
B.15,15
C.15,15.5
D.16,15
【答案】分析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;排序后位于中间位置的数,或中间两数的平均数.
解答:解:∵14岁有1人,15岁有4人,16岁有3人,17岁有2人,18岁有2人,
∴出现次数最多的数据时15,
∴队员年龄的众数为15岁;
∵一共有12名队员,
∴因此其中位数应是第6和第7名同学的年龄的平均数,
∴中位数为(16+16)÷2=16,
故中位数为16.
故选A.
点评:本题考查了众数及中位数的概念,在确定中位数的时候应该先排序,确定众数的时候一定要仔细观察.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2010•大田县)已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•大田县)已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二元一次方程组》(03)(解析版) 题型:解答题

(2010•大田县)已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年福建省三明市大田县中考数学试卷(解析版) 题型:解答题

(2010•大田县)已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年湖北省荆州市江陵县三湖中学九年级(下)第一次月考数学试卷(解析版) 题型:选择题

(2010•大田县)某中学篮球队12名队员的年龄情况如下:
年龄(单位:岁)1415161718
人数14322
则这个队队员年龄的众数和中位数分别是( )
A.15,16
B.15,15
C.15,15.5
D.16,15

查看答案和解析>>

同步练习册答案