精英家教网 > 初中数学 > 题目详情
已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.
(1)如图1,若∠DAB=60°,则∠AFG=
 
;如图2,若∠DAB=90°,则∠AFG=
 

(2)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明;
(3)如果∠ACB为锐角,AB≠AC,∠BAC≠90°,点M在线段BC上运动,连接AM,以AM为一边以点A为直角顶点,且在AM的右侧作等腰直角△AMN,连接NC;试探究:若NC⊥BC(点C、M重合除外),则∠ACB等于多少度?画出相应图形,并说明理由.(画图不写作法)
精英家教网
分析:(1)、(2)结合图3解决一般性问题:根据已知条件易证△ABE≌△ADC(SAS),得BE=CD,从而有BF=DG.连接AG,可证明△BAF≌△DAG,得∠GAF=∠DAB.根据等腰三角形性质及三角形内角和定理,已知∠DAB的度数,可求∠AFG的度数.
(3)依题意画图;延长CN于H,使NH=MC.构造出△ANH与△AMC全等,运用全等三角形性质,结合三角形内角和定理求解.
解答:(1)解:60°;45°…(2分)

(2)∠AFG=90°-
α
2
…(3分)
证明:连接AG.
∵∠DAB=∠CAE,∴∠DAC=∠BAE.精英家教网
又AD=AB,AC=AE,
∴△DAC≌△BAE…(4分)
∴DC=BE,∠ADC=∠ABE.
又G、F为中点,
∴DG=BF,
∴△DAG≌△BAF…(5分)
∴∠DAG=∠BAF.
∴∠GAF=∠DAB=α,
∠AFG=90°-
α
2
…(6分)

(3)解:如图.精英家教网
延长CN于H,使NH=MC,连接AH.
∵NC⊥BC,∠MAN=90°,
∴∠AMC+∠ANC=180°…(7分)
∵∠ANH+∠ANC=180°,
∴∠AMC=∠ANH…(8分)
在△AMC与△ANH中,
MC=NH
∠AMC=∠ANH
AM=AN

∴△AMC≌△ANH(SAS),
∴AC=AH,∠MAC=∠NAH…(9分)
∴∠HAC=∠MAN=90°.
∴∠ACH=45°,
∴∠ACB=45°…(10分)
点评:此题考查全等三角形的判定与性质,综合性强,难度大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知△ABC,分别以AB,AC为边,向形外作等边三角形ABD和ACE,连接BE,DC,其中,则△ADC≌△ABE的根据是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知△ABC,分别以BC、AC为边向形外作正方形BDEC,正方形ACFG,过C点的直线MN垂直于AB于N,交EF于M,
(1)当∠ACB=90°时,试证明:①EF=AB;②M为EF的中点;

(2)当∠ACB为锐角或钝角时,①EF与AB的数量关系为
当∠ACB为锐角时,EF>AB,当∠ACB为钝角时,EF<AB
(分情况说明);
②M还是EF的中点吗?请说明理由.(选择当∠ACB为锐角或钝角时的一种情况来说明)

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知△ABC,分别以AB、BC、CA为边向形外作等边三角形ABD、等边三角形BCE、等边三角形ACF.
(1)如图,当△ABC是等边三角形时,请你写出满足图中条件,四个成立的结论;
(2)如图,当△ABC中只有∠ACB=60°时,请你证明S△ABC与S△ABD的和等于S△BCE与S△ACF的和.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•博野县模拟)阅读下面材料:
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.

小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).
请你回答:图2中△BCE的面积等于
2
2

请你尝试用平移、旋转、翻折的方法,解决下列问题:
如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•南开区一模)阅读下面材料:小明遇到这样一个问题:如图1,△ABO和△CBO均为等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构成一个三角形,在计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而等到的△BCE即时以AD、BC、OC+OD的长度为三边长的三角形(如图2).
(I)请你回答:图2中△BCE的面积等于
2
2

(II)请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

同步练习册答案