精英家教网 > 初中数学 > 题目详情
19.二次函数y=kx2-6x+7的图象过点(1,2),且与x轴有两个交点A(x1,0),B(x2,0),则x1x2的值是(  )
A.1B.3C.6D.7

分析 可先求得抛物线的解析式,再令y=0可得到一元二次方程,再由根与系数的关系可求得x1x2

解答 解:
∵二次函数过点(1,2),
∴k-6+7=2,解得k=1,
∴抛物线解析式为y=x2-6x+7,
令y=可得x2-6x+7=0,
由题意可知x1和x2是该方程的两根,
∴x1x2=7,
故选D.

点评 本题主要考查二次函数与x轴的交点,掌握二次函数与x轴交点的横坐标是对应一元二次方程的两根是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为8cm2或2$\sqrt{15}$cm2或2$\sqrt{7}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知二次函数y=(x-1)(x-a-1)(a为常数,且a>0).
(1)求证:不论a为何值,该二次函数的图象总经过x轴上一定点;
(2)设该函数图象与x轴的交点为A、B(点A在点B的左侧),与y轴的交点为C,△ABC的面积为1.
①求a的值;
②D是该函数图象上一点,且点D的横坐标是m,若S△ABD=$\frac{1}{8}$S△ABC,直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y1=-x2+a与x轴正半轴交于点A,与y轴交于点B,点C(2,-3)在抛物线y1的图象上,连接AB,OC.
(1)求抛物线y1的函数表达式;
(2)若点P在x轴上,且∠CPA=∠OBA,求所有满足条件的点P的坐标;
(3)将抛物线y1沿x轴向右平移后得抛物线y2,且抛物线y2的图象过点C.
①请直接写出抛物线y2的函数表达式;
②点Q在抛物线y2的图象上,且△OCQ是以OC为底边的等腰三角形,请直接写出所有符合条件的点Q的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,A港口某天受潮汐的影响,24小时内港口水深h(m)随时间t(时)的变化而变化.
(1)水深h是时间t的函数吗?
(2)当t分别取4,10,17时,h是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在梯形ABCD中,AD∥BC,BC=2AD,O是BD的中点,过点O作EF∥AC交AB于E,交BC于F,若AC=16cm,求EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.10张卡片分别写有11至20十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字“13”)=$\frac{1}{10}$,P(摸到数字为偶数)=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的最小值为(  )
A.4B.$\sqrt{3}$+2C.$\sqrt{7}$+1D.2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.现有长为57cm的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm的整数,如果其中任意3小段都不能拼成三角形,则n的最大值为8.

查看答案和解析>>

同步练习册答案