精英家教网 > 初中数学 > 题目详情

【题目】等边三角形的内切圆半径、外接圆半径和高的比为(  )

A. 1∶ B. 1∶2∶ C. 1∶∶2 D. 1∶2∶3

【答案】D

【解析】

根据题意画图如下,作出辅助线OD、OE,证明△AOD为直角三角形且∠OAD30°,即可求出OD、OA的比,进而求出内切圆半径、外接圆半径和高的比.

如图,连接OD、OE;

因为AB、AC切圆OE.D,

所以OE⊥AB,OD⊥AC,

又因为AO=AO,

EO=DO,

所以△AEO≌ADO(HL),

∠DAO=∠EAO;

ABC为等边三角形,

∴∠BAC=60

∴∠OAC=60×=30

∴OD:AO=1:2.

∵OF=OD,

所以OD:AF=1:(2+1)=1:3,

所以内切圆半径、外接圆半径和高的比是1:2:3.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.

(1)分别求出A与C,A与D间的距离AC和AD(如果运算结果有根号,请保留根号).

(2)已知距离观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁的危险?(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为2的⊙O中,弦AB=2,⊙O上存在点C,使得弦AC=2,则∠BOC=____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不透明的袋子中装有 4 个相同的小球,它们除颜色外无其它差别,把它们分别标号:1、2、3、4

(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画树状图的方法求出“两次取的球标号相同”的概率

(2)随机摸出两个小球,直接写出“两次取出的球标号和等于 4”的概率.

(3)梯形ABCD中,AB∥DC,∠B=90°,E 为直线 BC上一点,若AB=5,BC=12,DC=7,当BE=?时,△ABE△DEC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=是反比例函数.

1)求m的值;

2)指出该函数图象所在的象限,在每个象限内,yx的增大如何变化?

3)判断点(2)是否在这个函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点CAP的中点,连接OC,则OC的最小值为(  )

A. 1 B. 2﹣1 C. D. ﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点E.

求证:(1)DE⊥AE;

(2)AE+CE=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:

①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )

A. ②④⑤⑥ B. ①③⑤⑥ C. ②③④⑥ D. ①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=x2-2x-3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).

(1)求∠OBC的度数;

(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;

(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.

查看答案和解析>>

同步练习册答案