精英家教网 > 初中数学 > 题目详情
如图,直线l经过A(3,0),B(0,3)两点,且与二次函数y=x2+1的图象,在第一象限内相交于点C.求:
(1)△AOC的面积;
(2)二次函数图象的顶点与点A、B组成的三角形的面积.
(1)设直线AB的解析式为y=kx+b,
把A(3,0),B(0,3)代入,得
3k+b=0
b=3

解得
k=-1
b=3

∴直线AB:y=-x+3,
解方程组
y=x2+1
y=-x+3

得C(1,2),
∴△AOC的面积为
1
2
×3×2=3.

(2)由顶点坐标公式得D(0,1),
∴S△ABD=
1
2
×2×3=3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+mx+n
与x轴交于不同的两点A(x1,0),B(x2,0),点A在点B的左边,抛物线与y轴交于点C,若A,B两点位于y轴异侧,且tan∠CAO=tan∠BCO=
1
3
,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=x2+bx+c过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

安庆迎江区农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长24米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形养圈的面积.
(2)请你判断他的设计方案是否使矩形养圈的面积最大?如果不是最大,应怎样设计?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

进入三月以来,重庆的气温渐渐升高,羽绒服进入了销售淡季.为此重庆某百货公司对某品牌的A款羽绒服进行了清仓大处理.已知A款羽绒服的销售价格y元与第x天(1≤x≤10,且为整数)之间的关系可用如下表表示:
时间(x天)12345678910
售价y(元/件)550500450400350300300300300300
在销售的前6天,A款羽绒服的销售数量z1(件)与第x天的关系式为z1=20x+40(1≤x≤6且为整数);后4天(7≤x≤10,且为整数)的销售数量z2件与第x天的关系如图所示
(1)请观察题中表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z2与x之间的一次函数关系式.
(2)若A款羽绒服的进价为每件200元,该专柜共有5个员工,每位员工每天的工资为100元,该专柜每天所需的固定支出为1000元,请结合上述信息,求这10天内哪天的利润最大,并求出这个最大利润.
(3)在第(2)问的前提下,为了提高收益、减少库存,商场在第11天作出以下决定:第11-15天继续维持A款羽绒服的售价,结果每天的销售量均与第10天的持平,同时在第11-15天将B款羽绒服也作为促销商品,而且作为销售重点,已知B款羽绒服的进价仍为200元每件,销售价格比A款羽绒服取得最大利润当天的售价降低了a%,而每天销售量则比第10天A款羽绒服的销量提高了2a%,最后5天A、B两款羽绒服的总利润为27100元,请你参考以下数据,计算出a的值.
参考数据:2.52=6.25,2.62=6.76,2.72=7.29,2.82=7.84.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ACB=90°AC=BC=6cm,正方形DEFG的边长为2cm,其一边EF在BC所在的直线L上,开始时点F与点C重合,让正方形DEFG沿直线L向右以每秒1cm的速度作匀速运动,最后点E与点B重合.
(1)请直接写出该正方形运动6秒时与△ABC重叠部分面积的大小;
(2)设运动时间为x(秒),运动过程中正方形DEFG与△ABC重叠部分的面积为y(cm2).
①在该正方形运动6秒后至运动停止前这段时间内,求y与x之间的函数关系式;
②在该正方形整个运动过程中,求当x为何值时,y=
1
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=BC=2,高BE=
3
,在BC边的延长线上取一点D,使CD=3.
(1)现有一动点P由A沿AB移动,设AP=t,S△PCD=S,求S与t之间的关系式及自变量t的取值范围.
(2)在(1)的条件下,当t=
1
3
时,过点C作CH⊥PD于H,设K=7CH:9PD.求证:关于x的二次函数y=-x2-(10k-
3
)x+2k
的图象与x轴的两个交点关于原点对称.
(3)在(1)的条件下,是否存在正实数t,使PD边上的高CH=
1
2
CD
?如果存在,请求出t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.

查看答案和解析>>

同步练习册答案