精英家教网 > 初中数学 > 题目详情

【题目】如图,已知的平分线与的垂直平分线相交于点,垂足分别为,则的长为__________

【答案】

【解析】

连接DCDB,根据中垂线的性质即可得到DB=DC,根据角平分线的性质即可得到DE=DF,从而即可证出△DEBDFC,从而得到BE=CF,再证△AED≌△AFD,即可得到AE=AF,最后根据即可求出BE.

解:如图所示,连接DCDB

DG垂直平分BC

DB=DC

AD平分

DE=DF,∠DEB=DFC=90°

RtDEBRtDFC中,

RtDEBRtDFC

BE=CF

RtAEDRtAFD中,

RtAEDRtAFD

AE=AF

AB=AEBE=AFBE=ACCFBE=AC2BE

BE=ABAC=1.5.

故答案为:1.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于抛物线.

1)它与x轴交点的坐标为 ,与y轴交点的坐标为 ,顶点坐标为

2)在坐标系中利用描点法画出此抛物线;

x








y








3)利用以上信息解答下列问题:若关于x的一元二次方程t为实数)在x的范围内有解,则t的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解

如图1,ABC中,沿BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,BAC是ABC的好角.

小丽展示了确定BAC是ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿B1A1C的平分线A1B2折叠,此时点B1与点C重合.

探究发现

ABC中,B=2C,经过两次折叠,BAC是不是ABC的好角?    (填“是”或“不是”).

小丽经过三次折叠发现了BAC是ABC的好角,则B与C(不妨设B>C)之间的等量关系为

根据以上内容猜想:若经过n次折叠BAC是ABC的好角,则B与C(不妨设B>C)之间的等量关系为   

应用提升

(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.

请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A4,0),点B0,6),点P是直线AB上的一个动点,已知点P的坐标为(m,n.

(1)当点P在线段AB上时(不与点AB重合)

①当m=2,n=3时,求POA的面积.

②记POB的面积为S,求S关于m的函数解析式,并写出定义域.

2)如果SBOPSPOA=1:2,请直接写出直线OP的函数解析式.(本小题只要写出结果,不需要写出解题过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在长方形从点出发的速度沿向点运动设点的运动时间为

(1)________;(的代数式表示)

(2)当为何值时

(3)当点从点开始运动同时从点出发的速度沿向点运动是否存在这样的使得全等?若存在请求出的值若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长为2ADBC边上的中线,MAD上的动点,E是边AC的中点,则EM+CM的最小值为( )

A.1B.12 C.3 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于(  )

A. 20° B. 30° C. 40° D. 50°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知在ABC中,AB=AC,BAC=90°,直角EPF的顶点P是BC的中点,两边PE、PF分别交AB和AC于点E、F,给出以下五个结论正确的个数有(  )

①AE=CF②APE=CPF ③BEP≌△AFP④EPF是等腰直角三角形EPF在ABC内绕顶点P旋转时(点E不与A、B重合),S四边形AEPF=SABC

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案