【题目】如图,已知的平分线与的垂直平分线相交于点,,,垂足分别为,,,,则的长为__________.
【答案】
【解析】
连接DC、DB,根据中垂线的性质即可得到DB=DC,根据角平分线的性质即可得到DE=DF,从而即可证出△DEB≌DFC,从而得到BE=CF,再证△AED≌△AFD,即可得到AE=AF,最后根据,即可求出BE.
解:如图所示,连接DC、DB,
∵DG垂直平分BC
∴DB=DC
∵AD平分,,
∴DE=DF,∠DEB=∠DFC=90°
在Rt△DEB和Rt△DFC中,
∴Rt△DEB≌Rt△DFC
∴BE=CF
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD
∴AE=AF
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE
∵,
∴BE=(AB-AC)=1.5.
故答案为:1.5.
科目:初中数学 来源: 题型:
【题目】对于抛物线.
(1)它与x轴交点的坐标为 ,与y轴交点的坐标为 ,顶点坐标为 ;
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
探究发现
△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? (填“是”或“不是”).
小丽经过三次折叠发现了∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 .
应用提升
(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(4,0),点B(0,6),点P是直线AB上的一个动点,已知点P的坐标为(m,n).
(1)当点P在线段AB上时(不与点A、B重合)
①当m=2,n=3时,求△POA的面积.
②记△POB的面积为S,求S关于m的函数解析式,并写出定义域.
(2)如果S△BOP:S△POA=1:2,请直接写出直线OP的函数解析式.(本小题只要写出结果,不需要写出解题过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形中,,,点从点出发,以的速度沿向点运动,设点的运动时间为秒:
(1)________;(用的代数式表示)
(2)当为何值时,≌;
(3)当点从点开始运动,同时,点从点出发,以的速度沿向点运动,是否存在这样的值,使得与全等?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为2,AD是BC边上的中线,M是AD上的动点,E是边AC的中点,则EM+CM的最小值为( )
A.1B.12 C.3 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB和AC于点E、F,给出以下五个结论正确的个数有( )
①AE=CF②∠APE=∠CPF ③△BEP≌△AFP④△EPF是等腰直角三角形⑤当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),S四边形AEPF=S△ABC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com