精英家教网 > 初中数学 > 题目详情

【题目】如图,长方形ABCD中,AB4cmBC3cmECD的中点.动点PA点出发,以每秒1cm的速度沿ABCE运动,最终到达点E.若点P运动的时间为x秒,则当x_____时,APE的面积等于5

【答案】5

【解析】

PAB上、PBC上、PCE上三种情况,根据三角形的面积公式计算即可.

解:当PAB上时,

∵△APE的面积等于5

x35

x

PBC上时,

∵△APE的面积等于5

S矩形ABCDSCPESADESABP5

3×43+4x×2×2×3×4×x4)=5

x5

③当PCE上时,

4+3+2x×35

x(不合题意),

故答案为:5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法正确的是  

A. 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件

B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,则甲的射击成绩较稳定

C. “明天降雨的概率为”,表示明天有半天都在降雨

D. 了解一批电视机的使用寿命,适合用普查的方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y=- x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.

(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?

(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AGBC于点G,AFDE于点F,EAF=GAC.

(1)求证:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系 xOy 中,已知正比例函数 y1=﹣2x 的图象与反比例函数 y2的图象交于 A(﹣1,a),B 两点.

(1)求出反比例函数的解析式及点 B 的坐标;

(2)观察图象,请直接写出满足 y≤2 的取值范围;

(3) P 是第四象限内反比例函数的图象上一点,若POB 的面积为 1,请直接写出点 P的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,正方形OABC的点A轴上,点C轴上,点B44),点EBC边上.将△ABE绕点A 顺时针旋转90°,得△AOF,连接EF轴于点D

)若点E的坐标为().求

1)线段EF的长;

2)点D的坐标;

)设点E),,试用含的式子表示,并求出使取得最大值时点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点PPBl于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A的中点.

(1)求证:直线l是⊙O的切线;

(2)若PA=6,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案