【题目】如图(1)所示,∠AOB、∠COD都是直角.
(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.
(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.
【答案】(1)∠AOD与∠COB互补;(2)成立,证明见解析
【解析】
试题分析:(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;
(2)根据周角等于360°列式整理即可得解.
解:(1)∠AOD与∠COB互补.
理由如下:∵∠AOB、∠COD都是直角,
∴∠AOB=∠COD=90°,
∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,
∠BOD=∠COD﹣∠COB=90°﹣∠COB,
∴∠AOD﹣90°=90°﹣∠COB,
∴∠AOD+∠COB=180°,
∴∠AOD与∠COB互补;
(2)成立.
理由如下:∵∠AOB、∠COD都是直角,
∴∠AOB=∠COD=90°,
∵∠AOB+∠BOC+∠COD+∠AOD=360°,
∴∠AOD+∠COB=180°,
∴∠AOD与∠COB互补.
科目:初中数学 来源: 题型:
【题目】(3分)如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数 的图像恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为( )
A.3
B.4
C.6
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个老太太提着一个篮子去卖鸡蛋,第一个人买走了她的鸡蛋的一半又半个;第二个人买走了剩下的一半又半个;第三人买走了前两个人剩下的一半又半个,正好卖完全部鸡蛋,问老太太一共卖了多少个鸡蛋.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,点从点出发,沿向点匀速运动,速度为每秒1个单位,过点作,交对角线于点.点从点出发,沿对角线向点匀速运动,速度为每秒1个单位. 、两点同时出发,设它们的运动时间为秒().
(1)当时,求出的值;
(2)连接,当时,求出的值;
(3)试探究:当为何值时,是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,将边长为2的正方形OABC如图①放置,O为原点. (Ⅰ)若将正方形OABC绕点O逆时针旋转60°时,如图②,求点A的坐标;
(Ⅱ)如图③,若将图①中的正方形OABC绕点O逆时针旋转75°时,求点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD的各顶点均在网格点上.
(1)将四边形ABCD平移,使得D点平移到D1(3,4),画出平移后的四边形A1B1C1D1;
(2)画出四边形ABCD绕着原点O逆时针旋转90°后的四边形A2B2C2D2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面内直角坐标系中,直线l:y= x+1交x轴于点A,交y轴于点B,点A1 , A2 , A3 , …在x轴上,点B1、B2、B3 , …在直线l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均为等边三角形,则OAn的长是( )
A.2n
B.(2n+1)
C.(2n﹣1﹣1)
D.(2n﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC,D是AC上一点,AE⊥BD,交BD的延长线于E,CF⊥BD于F.
(1)求证:CF=BE;
(2)若BD=2AE,求证:∠EAD=∠ABE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com