精英家教网 > 初中数学 > 题目详情
20.如图,在平面直角坐标中,点O为坐标原点,抛物线y=a(x-2)2-10a与x轴交于A、B两点,与y轴交于点C.
(1)如图1,求AB的长;
(2)如图1,直线y=kx与抛物线y=a(x-2)2-10a交于点E,点E的横坐标为6,过点E作EG∥AB交抛物线于另一点G,作GD∥y轴交x轴于点F,交直线EO于点D,求证:GF=3DF;
(3)如图2,在(2)的条件下,连接EC,当∠ECO=45°时,点P为第四象限抛物线上一点,过点P作直线PQ⊥x轴于点R,直线PQ交直线DE于点Q,连接PD、DR、ER、EF,当S△PRD-S△PRO=S△EFD时,求点P坐标.

分析 (1)令y=0求出A、B两点坐标,即可求出AB的值.
(2)想办法求出E、G、D坐标,即可求出GF、DF,由此即可解决问题.
(3)如图3中,设EG交y轴于M,由∠ECO=45°,EG⊥CM,推出∠MCE=∠MEC=45°,EM=MC=6,12a=6,推出a=$\frac{1}{2}$,可得F(-2,0),D(-2,-1),E(6,3),抛物线的解析式为y=$\frac{1}{2}$(x-2)2-5,即y=$\frac{1}{2}$x2-2x-3,设P(m,$\frac{1}{2}$m2-2m-3),根据S△PRD-S△PRO=S△EFD,列出方程即可解决问题.

解答 解:(1)对于抛物线y=a(x-2)2-10a,令y=0得到a(x-2)2-10a=0,
解得x=2±$\sqrt{10}$,
∴B(2+$\sqrt{10}$,0),A(2-$\sqrt{10}$,0),
∴AB=2+$\sqrt{10}$-2+$\sqrt{10}$=2$\sqrt{10}$.

(2)如图1中,

∵直线y=kx与抛物线y=a(x-2)2-10a交于点E,点E的横坐标为6,
∴E(6,6a),
把E(6,6a)代入y=kx得到k=a,
∴直线的解析式为y=ax,
∵点E、G关于直线x=2对称,
∴G(-2,6a),
∵GD∥y轴,
∴D(-2,-2a),
∴GF=6a,DF=2a,
∴GF=3DF.

(3)如图3中,设EG交y轴于M,

由题意,C(0,-6a),M(0,6a),
∵∠ECO=45°,EG⊥CM,
∴∠MCE=∠MEC=45°,
∴EM=MC=6,
∴12a=6,
∴a=$\frac{1}{2}$,
∴F(-2,0),D(-2,-1),E(6,3),抛物线的解析式为y=$\frac{1}{2}$(x-2)2-5,即y=$\frac{1}{2}$x2-2x-3,
设P(m,$\frac{1}{2}$m2-2m-3),
∵S△PRD-S△PRO=S△EFD
∴$\frac{1}{2}$•(m+2)•(-$\frac{1}{2}$m2+2m+3)-$\frac{1}{2}$•m•(-$\frac{1}{2}$m2+2m+3)=$\frac{1}{2}$•1•8,
整理得m2-4m-2=0,解得m=2+$\sqrt{6}$或2-$\sqrt{6}$(舍弃),
∴点P坐标为(2+$\sqrt{6}$,-2).

点评 本题考查二次函数综合题、待定系数法、等腰直角三角形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数,构建方程,学会用转化的思想思考问题,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.计算(-1)÷(-3)×(-$\frac{1}{3}$)的结果是(  )
A.-1B.-9C.-$\frac{1}{9}$D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.一件轮廓为圆形的文物出土后只留下了一块残片,文物学家希望能把此件文物进行复原,如图所示,请你帮助文物学家作出此文物轮廓圆心O的位置(要求:尺规作图,保留作图痕迹,不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.计算:8(x+y)8(x-y)6÷[2(x+y)3•(x-y)3]2=2(x+y)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列计算结果正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.$\sqrt{12}$=4$\sqrt{3}$C.$\sqrt{3}$×$\sqrt{3}$=$\sqrt{6}$D.$\sqrt{(-3)^{2}}$=3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.今年某区积极推进“互联网+享受教育”课堂生态重构,加强对学校教育信息化的建设的投入,计划2017年投入1440元,已知2015年投入1000万元,设2015-2017年投入经费的年平均增长率为x,根据题意,下面所列方程正确的是(  )
A.1000(1+x)2=1440B.1000(x2+1)=1440
C.1000+1000x+1000x2=1440D.1000+1000(1+x)+1000(1+x)2=1440

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.求[$\frac{1{0}^{20000}}{1{0}^{100}+3}$]的个位数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.要为一幅长28cm,宽20cm的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一.镜框边的宽度应是多少厘米(结果保留小数点后一位)?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列各数,比-3小的数是(  )
A.-4B.-2C.0D.5

查看答案和解析>>

同步练习册答案