【题目】如图,在等边和等边中,过作交延长线于点.
(1)如图,求证:四边形为菱形;
(2)如图,过作交于点,连接,不添加任何辅助线,直接写出与相等的所有角(不包括).
【答案】(1)见详解;(2)与相等的角有∠ABE,∠CBD,∠ACG,∠DEG.
【解析】
(1)由等边三角形的性质,得到AB=BC=AC,BE=BD,∠ABC=∠BAC=∠EBD=60°,先证明△ABE≌△CBD,则∠BEF=∠BDA,然后证明△FEB≌△ADB,则BF=BA=AC,则四边形AFBC是平行四边形,由BC=AC,即可得到答案;
(2)由三角形的内角和定理,得到∠ABE=∠ADE,由等量代换,得到∠CBD=∠ABE=∠ADE,由平行线的性质得∠ACG=∠ADE,由ASA证明△ABE≌△ACG,则CG=BE=DE,得到四边形CDEG是平行四边形,则∠DEG=∠ACG=∠ADE,即可得到答案.
解:(1)如图:
在等边和等边中,
∴AB=BC=AC,BE=BD,∠ABC=∠BAC=∠EBD=60°,
∴∠ABE+∠ABD=∠ABD+∠CBD=60°,
∴∠ABE=∠CBD,
∴△ABE≌△CBD(SAS),
∴∠AEB=∠CDB,
∴∠BEF=∠BDA,
∵BF∥AC,
∴∠ABF=∠BAC=60°,
∵∠FBE+∠ABE=∠ABE+ABD=60°,
∴∠FBE=∠ABD,
∵BE=BD,
∴△FEB≌△ADB,
∴BF=BA=AC,
∴四边形AFBC是平行四边形,
∵BC=AC,
∴四边形AFBC是菱形;
(2)如图:
∵∠BED=∠BAC=60°,∠BHE=∠DHA,
∴∠ABE=∠ADE;
由(1)知,∠CBD=∠ABE,
∴∠CBD=∠ADE;
∵CG∥DE,
∴∠ACG=∠ADE;
∴∠ACG=∠ABE,
∵AF∥BC,
∴∠BAE=∠ABC=∠BAC=60°,
∵AB=AC,
∴△ABE≌△ACG,
∴CG=BE=DE,
∵CG∥DE,
∴四边形CDEG是平行四边形,
∴∠DEG=∠ACG=∠ADE;
∴与相等的角有:∠ABE,∠CBD,∠ACG,∠DEG.
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,点、分别在边和上,沿折叠四边形,使点、分别落在、处,得四边形,点在上,过点作于点,连接,则下列结论:①;②;
③;④若点是的中点,则,其中,正确结论的序号是_______.(把所有正确结论的序号都在填在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过和两点的抛物线交轴于两点,是抛物线上一动点,平行于轴的直线经过点.
(1)求抛物线的解析式;
(2)如图1,轴上有点连接,设点到直线的距离为..小明在探究的值的过程中,是这样思考的:当是抛物线的顶点时,计算的值;当不是抛物线的顶点时,猜想是一个定值.请你直接写出的值,并证明小明的猜想.
(3)如图2,点在第二象限,分别连接、,并延长交直线于两点.若两点的横坐标分别为,试探究之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,是边上的中线,点为线段上一点(不与点、点重合),连接,作与的延长线交于点,与交于点,连接.
(1)求证:;
(2)求的度数;
(3)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知抛物线(a<0)与x轴交于A、B两点(点A在点B左侧),与y轴负半轴交于点C,顶点为D,已知:S四边形ACBD=1:4.
(1)求点D的坐标(用仅含c的代数式表示);
(2)若tan∠ACB=,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,在△ABC中和△DCE中,,,,点D是BC的垂线AF上任意一点.填空:
①的值为 ;
②∠ABE的度数为 .
(2)类比探究:如图2,在△ABC中和△DCE中,,,点D是BC的垂线AF上任意一点.请判断的值及∠ABE的度数,并说明理由;
(3) 拓展延伸:在(2)的条件下,若,,请直接写出BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了应对全球新冠肺炎,满足抗疫物资的需求,某电机公司转型生产呼吸机和呼吸机,每台呼吸机比每台呼吸机的生产成本多200元,用5万元生产呼吸机与用4.5万元生产呼吸机的数量相等
(1)求每台呼吸机、呼吸机的生产成本各是多少元?
(2)该公司计划生产这两种呼吸机共50台进行试销,其中呼吸机为台,生产总费用不超过9.8万元,试销时呼吸机每台售价2500元,呼吸机每台售价2180元,公司决定从销售呼吸机的利润中按每台捐献元作为公司捐献国家抗疫的资金,若公司售完50台呼吸机并捐献资金后获得的利润不超过23000元,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com