【题目】如图1,已知长方形ABCD,AB=CD, BC=AD,P为长方形ABCD边上的动点,动点P从A出发,沿着A→B→C→D运动到D点停止,速度为2cm/s,设点P用的时间为x秒,△APD的面积为y,y和x的关系如图2所示.
(1)AB=________cm, BC=______cm;
(2)写出时,y与x之间的关系式;
(3)当y=12时,求x的值;
(4)当P在线段BC上运动时,是否存在点P使得△APD的周长最小,若存在,求出此时∠APD的度数,若不存在,请说明理由.
【答案】(1)AB=6cm,BC=12cm;(2)y=12x;(3)x=1或11;(4)存在,此时∠APD =90°
【解析】(1)根据函数图象可得从A到B共用了3秒,从B到C用了6秒,速度为2cm/s,则可计算出AB、BC的长度;
(2)由三角形面积公式可得: ,△APD的面积=和AP=2x可得出y与x之间的关系式;
(3)分情况讨论,当点P在AB和CD上时,求得x的值即可;
(4)作A关于直线BC的对称点A′,连接A′D与BC交于点P,根据两边之和大于第三边可知A′D最小,即△APD的周长最小,求出∠APD=∠A′+∠BAP=90°.
(1)∵由函数图象可得:点P从A到B共用了3秒,从B到C用了6秒,点P的速度为2cm/s
∴AB=6cm, BC=12cm;
(2)如图所示:
当时,点P在线段AB上,AP=2x,
∴S△ADP=.
(3)如图所示:
分两种情况:
①当P在AB上时,如图所示,当y=3时,3=3x,x=1,
②当P在CD上时,如图所示,则AB+BC+CP=t,
∴PD=3+3+6-t=12-t,
∴y=PDAD=×6×(12-t)=3(12-t),
当y=3时,3=3(12-t),
t=11,
综上所述,当y=3时,x的值是1秒或11秒;
(4)存在,如图所示,延长AB至A′,使AB=A′B,连接A′D,交BC于P,连接AP,
此时△APD的周长最小,
∴AA′=AB+BA′=3+3=6,
∴AD=AA′=6,
∴△A′AD是等腰直角三角形,
∴∠A′=45°,
∵∠ABC=90°,
∴BP是AA′的中垂线,
∴AP=PA′,
∴∠A′=∠BAP=45°,
∴∠APD=∠A′+∠BAP=90°.
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(2,7) ,直线l经过A点且平行于x
轴,直线l上的动点C从A点出发以每秒4个单位的速度沿直线l运动.若在x轴上有两点D、E,
连接DB、OB,连接EC、OC,满足DB=OB,EC=OC,设点C运动时间t秒,
(1) 如图1,若动点C从A点出发向左运动,当t=1秒时,
①求线段BC的长和点E的坐标;
②求此时DE与AC的数量关系?
(2)探究:动点C在直线l运动,无论t取何值,是否都存在上述(1)②中的数量关系? 若存在,请证明;若不存在,请说明理由.
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.
(1)填空:经过A,B,D三点的抛物线的解析式是;
(2)已知点F在(1)中的抛物线的对称轴上,求点F到点B,D的距离之差的最大值;
(3)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;
(4)如图2,当点P在线段AB上移动时,设P点坐标为(x,﹣2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而增大时所对应的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线.
(2)求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.
请将下面的解答过程补充完整,并填空(理由或数学式)
解:∵DE∥BC,∴∠DEF= .( )
∵EF∥AB,∴ =∠ABC.( )
∴∠DEF=∠ABC.(等量代换)
∵∠ABC=40°,∴∠DEF= °.
(2)应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=60°,则∠DEF= °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为 ;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com