精英家教网 > 初中数学 > 题目详情
如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),A点的横坐标为-1.

(1)求一次函数的解析式;
(2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
(1) (2)P(

试题分析:⑴∵A点的横坐标是-1,∴A(-1,3).             
设一次函数解析式为,因直线过点A、点C.
,解得.
∴一次函数的解析式为.             
⑵∵的图象与的图象关于y轴对称,
.              
∵B点是直线与y轴的交点,∴B(0,2).
∵C(2,0),∴.            
,
=4.
设P(x,y)
.


∴P()             
点评:本题考查一次函数与反比例函数,本题主要考查利用待定系数法求一次函数的解析式,还有就是掌握反比例函数的性质
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一次函数的图像与反比例函数的图像相交于A、B两点,

(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图像回答:当x取何值时
(3)根据图像回答:当x取何值时

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对关于的一次函数和二次函数.
(1) 当时, 求函数的最大值;
(2) 若直线和抛物线有且只有一个公共点, 求
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣)a.

(1)求点A的坐标和∠ABO的度数;
(2)当点C与点A重合时,求a的值;
(3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.
(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?
(2)设每月用水量为吨,应交水费为y元,写出y与之间的函数关系式;
(3)小英家3月份用水24吨,她家应交水费多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当动点Q到达点D时另一个动点P也随之停止运动.设运动的时间为t(秒).

(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;
(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线与双曲线相交于M、N点,其横坐标分别为1和3,则不等式的解集是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图1,△OAB是边长为2的等边三角形,OAx轴上,点B在第一象限内;△OCA是一个等腰三角形,OCAC,顶点C在第四象限,∠C=120°.现有两动点PQ分别从AO两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿AOB运动,当其中一个点到达终点时,另一个点也随即停止.

(1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围;
(2)在OA上(点OA除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图2,现有∠MCN=60°,其两边分别与OBAB交于点MN,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得MN始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线与x轴正半轴交于点A(2,0),以OA为边在x轴上方作正方形OABC,延长CB交直线于点D,再以BD为边向上作正方形BDEF.

(1)求点F的坐标;
(2)设直线OF的解析式为,若,求x的取值范围.

查看答案和解析>>

同步练习册答案