精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.

(1)求证:BC为⊙O的切线.
(2)若sinA= ,BC=6,求⊙O的半径.

【答案】
(1)证明:∵∠A与∠E所对的弧是 弧BD
∴∠A=∠E,
又∵∠E+∠C=90°,
∴∠A+∠C=90°,
∴∠ABC=180°﹣90°=90°,
∵AB为直径,
∴BC为⊙O的切线.
(2)解:∵sinA= ,BC=6,
=
=
∴AC=10,
在Rt△ABC中,
∴AB= = =8,
又∵AB为直径,
∴⊙O的半径是 ×8=4.
【解析】(1)根据同弧所对的圆周角相等得∠A=∠E,同等量代换得∠A+∠C=90°,再由三角形内角和得∠ABC=90°,根据切线的判定即可得BC为⊙O的切线.
(2)由三角函数正弦定义得:sinA== ,从而得AC=10,在Rt△ABC中,根据勾股定理得AB=8,从而得⊙O的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线,把的直角三角板的直角顶点放在直线.将直角三角板在平面内绕点任意转动,若转动的过程中,直线与直线的夹角为60°,则的度数为___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】提出问题:

1)如图,我们将图(1)所示的凹四边形称为镖形”.镖形图中,的数量关系为____.

2)如图(2),已知平分,求的度数.

由(1)结论得:

所以

因为

所以

所以.

解决问题:

1)如图(3),直线平分, 平分的外角,猜想的数量关系是______

2)如图(4),直线平分的外角, 平分的外角,猜想的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:A03),B30),C34)三点,点Px,﹣0.5x),当ABP的面积等于ABC的面积时,则P点的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读了其中的奥秘.

你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:

,又

能确定59319的立方根是个两位数.

59319的个位数是9,又

能确定59319的立方根的个位数是9.

③如果划去59319后面的三位319得到数59,

,则,可得

由此能确定59319的立方根的十位数是3

因此59319的立方根是39.

(1)现在换一个数110592,按这种方法求立方根,请完成下列填空.

①它的立方根是 位数.

②它的立方根的个位数是

③它的立方根的十位数是

110592的立方根是

(2)请直接填写结果:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.

(1)求证:四边形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程变形正确的是( )
A.方程3x﹣2=2x﹣1移项,得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1
C.方程 可化为3x=6.
D.方程 系数化为1,得x=﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线AB经过点A(6,0)、B(0,6),⊙O的半径为2(O为坐标原点),点P是直线AB上的一动点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )

A.
B.3
C.3
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出(

A.直角三角形的面积

B.最大正方形的面积

C.较小两个正方形重叠部分的面积

D.最大正方形与直角三角形的面积和

查看答案和解析>>

同步练习册答案