分析 (1)由旋转的性质得出△ACE≌△ABD得出AE=AD=5.CE=BD=6.∠DAE=60°,得出△ADE是等边三角形,
(2)由△ADE是等边三角形,因此DE=AD=5.作EH⊥CD垂足为H.设DH=x,由勾股定理得出方程,解方程求出DH,由勾股定理求出EH,即可得出△DCE的面积.
解答 解:(1)由旋转的性质得:△ACE≌△ABD,
∴AE=AD=5.CE=BD=6.∠DAE=60°.
∴DE=5.
∴AE=AD=DE=5,
∴△ADE是等边三角形,
(2)作EH⊥CD垂足为H.
设DH=x.
由勾股定理得:EH2=CE2-CH2=DE2-DH2,
即62-(4-x)2=52-x2,
解得:x=$\frac{5}{8}$,
∴DH=$\frac{5}{8}$,
由勾股定理得:EH=$\sqrt{D{E}^{2}-D{H}^{2}}=\sqrt{{5}^{2}-(\frac{5}{8})^{2}}=\frac{15}{8}\sqrt{7}$,
∴△DCE的面积=$\frac{1}{2}$CD×EH=$\frac{15\sqrt{7}}{4}$.
点评 本题考查了旋转的性质、勾股定理、等边三角形的判定与性质;熟练掌握旋转的性质,由勾股定理求出DH,EH是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 六边形的内角和为360度 | B. | 多边形的外角和与边数有关 | ||
C. | 面积相等的三角形全等 | D. | 三角形两边的和大于第三边 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com