精英家教网 > 初中数学 > 题目详情

【题目】对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点理想值,记作.如理想值

1)①若点在直线上,则点理想值等于_______

②如图,的半径为1.若点上,则点理想值的取值范围是_______

2)点在直线上,的半径为1,点上运动时都有,求点的横坐标的取值范围;

3是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)

【答案】1)①﹣3;②;(2;(3

【解析】

1)①把Q1a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线相切时理想值最大,x中相切时,理想值最小,即可得答案;(2)根据题意,讨论轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线点理想值最大时点上,分析图形即可.

1)①∵点在直线上,

理想值=-3

故答案为:﹣3.

②当点轴切点时,点理想值最小为0.

当点纵坐标与横坐标比值最大时,理想值最大,此时直线切于点

设点Qxy),x轴切于A,与OQ切于Q

C1),

tanCOA==

∴∠COA=30°

OQOA的切线,

∴∠QOA=2COA=60°

=tanQOA=tan60°=

∴点理想值

故答案为:.

2)设直线与轴、轴的交点分别为点,点

x=0时,y=3

y=0时,x+3=0,解得:x=

tanOAB=

∴①如图,作直线

轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.

轴于点

的半径为1

②如图

与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.

轴于点,则

设直线与直线的交点为

∵直线中,k=

,点FQ重合,

的半径为1

由①②可得,的取值范围是

3)∵M2m),

M点在直线x=2上,

LQ取最大值时,=

∴作直线y=x,与x=2交于点N

MONx轴同时相切时,半径r最大,

根据题意作图如下:MON相切于Q,与x轴相切于E

x=2代入y=x得:y=4

NE=4OE=2ON==6

∠MQN=NEO=90°

∵∠ONE=MNQ

,即

解得:r=.

∴最大半径为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个盒子中有1个白球和2个红球,这些球除颜色外都相同.

⑴如果从盒子中随机摸出1个球,摸出红色球的概率为_____________;

⑵若从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请通过列表或画树状图的方法,求两次摸到不同颜色球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解学生对第二十届中国哈尔滨冰雪大世界主题景观的了解情况,在全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图的不完整的两幅统计图:

(1)本次调查共抽取了多少名学生;

(2)通过计算补全条形图;

(3)若该学校共有名学生,请你估计该学校选择比较了解项目的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A(0,4),B(﹣3,0)反比例函数y=(k为常数,k≠0,x>0)的图象经过点D.

(1)填空:k=_____

(2)已知在y=的图象上有一点N,y轴上有一点M,且四边形ABMN是平行四边形,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(﹣2,﹣2),B03),C33),D4,﹣2),y是关于x的二次函数,抛物线y1经过点ABC,抛物线y2经过点BCD,抛物线y3经过点ABD,抛物线y4经过点ACD.下列判断:

四条抛物线的开口方向均向下;

x0时,至少有一条抛物线表达式中的y均随x的增大而减小;

抛物线y1的顶点在抛物线y2顶点的上方;

抛物线y4y轴的交点在点B的上方.

所有正确结论的序号为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在河对岸有一棵大树 A,在河岸 B 点测得 A 在北偏东 60°方向上,向东前进 200m 到达 C 点,测得 A 在北偏东 30°方向上,求河的宽度(精确到 0.1m).参考数据 ≈1.414≈1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca0)的图象经过点A12).

1)当b1c=﹣4时,求该二次函数的表达式;

2)已知点Mt15),Nt+15)在该二次函数的图象上,请直接写出t的取值范围;

3)当a1时,若该二次函数的图象与直线y3x1交于点PQ,将此抛物线在直线PQ下方的部分图象记为C

①试判断此抛物线的顶点是否一定在图象C上?若是,请证明;若不是,请举反例;

②已知点P关于抛物线对称轴的对称点为P′,若P′在图象C上,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形MNPQ放置在矩形ABCD中,使点MN分别在ABAD边上滑动,若MN=6PN=4,在滑动过程中,点A与点P的距离AP的最大值为(  )

A. 4 B. 2 C. 7 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=﹣x2x3x轴于AB两点(点A在点B的左侧),交y轴于点C

1)求直线AC的解析式;

2)点P是直线AC上方抛物线上的一动点(不与点A,点C重合),过点PPDx轴交AC于点D,求PD的最大值;

3)将△BOC沿直线BC平移,点B平移后的对应点为点B′,点O平移后的对应点为点O′,点C平移后的对应点为点C′,点S是坐标平面内一点,若以ACO′,S为顶点的四边形是菱形,求出所有符合条件的点S的坐标.

查看答案和解析>>

同步练习册答案