精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm,等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止.
(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由
 
形变化为
 
形;
(2)设当等腰直角三角形PMN移动x(s)时,等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积为y(cm2
①当x=6时,求y的值;
②当6<x≤10时,求y与x的函数关系.
精英家教网
分析:(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;
(2)可分为以下两种情况:
①当0<x≤6时,重叠部分的形状为等腰直角三角形EAN,AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,求出EH,根据三角形的面积公式求出即可;②当6<x≤10时,重叠部分的形状是等腰梯形ANED,求出AN=x(cm),CE=BN=10-x,DE=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,求出DF,代入梯形面积公式求出即可;
解答:精英家教网解:(1)由条件可得出∠PNM=∠DAB=45°,所以有等腰Rt△PMN向右平移的过程中与等腰梯形ABCD重叠部分的形状由等腰直角三角形变化为等腰梯形;
故答案为:等腰直角三角形、等腰梯形;

(2)重叠部分图形的形状可分为两种情况:等腰Rt△PMN在整个移动过程中与等腰梯形ABCD重叠部分图形的形状可分为以下两种情况:
①当0<x≤6时,重叠部分的形状是等腰直角三角形EAN(如图①).
此时AN=xcm,过点E作EH⊥AB于点H,则EH平分AN,
∴y=S△ANE=
1
2
AN•EH=
1
2
x•
1
2
x=
1
4
x2
当x=6时,y=
1
4
×62=9

②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).
此时AN=xcm,
∵∠PNM=∠B=45°,∴EN∥BC.
又∵CE∥BN,
∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6.
过点D作DF⊥AB于F,过点C作CG⊥AB于G,
则AF=BG,DF=AF=
1
2
(10-4)=3,
∴y=ST梯形ANED=
1
2
(DE+AN)•DF=
1
2
(x-6+x)×3=3x-9.
点评:本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案