精英家教网 > 初中数学 > 题目详情
如图1,△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°
(1)如图2,若点C、A、D在同一条直线上,且点E在AB上,连接CE、BD,试判断CE与BD有什么样的关系,并说明理由.
(2)将△ADE绕点A旋转到如图3所示的位置,同样连接CE、BD,(1)中的结论还成立吗?并说明理由.
精英家教网
分析:(1)根据等腰直角三角形两直角边相等和直角相等,可以证明△ACE和△ABD全等,再根据全等三角形对应边相等得到CE=BD,全等三角形对应角相等得到∠ACE=∠ABD,又∠AEC=∠BEM,所以∠BME=∠CAE=90°,所以CE⊥BD.
(2)结论和证明思路与(1)相同.
解答:解:(1)CE=BD,CE⊥BD.
证明如下:在图2中,延长CE交BD于点M,
∵△ABC和△ADE是等腰直角三角形,
∠BAC=∠DAE=90°,
∴AC=AB,AE=AD,
在△ACE和△ABD中,
AC=AB
∠BAC=∠DAE=90°
AE=AD

∴△ACE≌△ABD(SAS),
∴CE=BD,∠ACE=∠ABD,
又∠AEC=∠BEM,
而∠ACE+∠AEC=90°,
∴∠ABD+∠BEM=90°,
∴∠CMB=90°,
∴CE⊥BD;

(2)(1)中的结论CE=BD,CE⊥BD成立,
延长BD交CE于点M.
证明过程与(1)相同.
精英家教网
点评:本题考查了三角形全等的判定和全等三角形的性质及等腰三角形的性质;作出辅助线结合图形弄清楚解题思路是求解的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,在△ABC和△DEF中,已知AB=DE,AC=DF,要使△ABC≌△DEF,根据三角形全等的判定公理还需添加条件(填上你认为正确的一种情况)
∠A=∠D

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:在△ABC和△ADE中,已知∠1=∠2,∠B=∠E,AC=AD.请说明△ABC≌△AED的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是
AC=DF
AC=DF
.(只需写一个,不添加辅助线)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ADE中,∠DAB=∠EAC,∠C=∠E.
(1)△ABC与△ADE相似吗?为什么?
(2)如果5AD=3AB,BC=10cm,求DE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△EFD中,AB=EF,AC=ED,点B,D,C,F在一条直线上.
(1)请你添加一个条件,由“SSS”可判定△ABC≌△EFD.
(2)在(1)的基础上,求证:AB∥EF.

查看答案和解析>>

同步练习册答案