【题目】如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点,(不与点B、C)重合,将线段AD绕点A逆时针旋转60°得到AE,连接EC,则∠ACE的度数是__________,线段AC,CD,CE之间的数量关系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.
【答案】(1)60°,AC=DC+EC(2)∠ACE=45°,BD2+CD2=2AD2,详见解析(3)AD=或AD=
【解析】
(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;
(3)如图3,作AE⊥CD于E,连接AD,根据勾股定理得到BC==,推出点B,C,A,D四点共圆,根据圆周角定理得到∠ADE=45°,求得△ADE是等腰直角三角形,得到AE=DE,根据勾股定理即可得到结论.
(1)∵在△ABC中,AB=AC,∠BAC=60°,
∴∠BAC=∠DAE=60°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠B=60°,BD=CE,
∴BC=BD+CD=EC+CD,
∴AC=BC=EC+CD;
故答案为:60°,AC=DC+EC;
(2)BD2+CD2=2AD2,
理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,又AD=AE,
∴BD2+CD2=2AD2;
(3)如图3,作AE⊥CD于E,连接AD,
∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,
∴BC=,
∵∠BAC=90°,AB=AC,
∴AB=AC=,∠ABC=∠ACB=45°,
∵∠BDC=∠BAC=90°,
∴点B,C,A,D四点共圆,
∴∠ADE=45°,
∴△ADE是等腰直角三角形,
∴AE=DE,
∴CE=5DE,
∵AE2+CE2=AC2,
∴AE2+(5AE)2=17,
∴AE=1,AE=4,
∴AD=或AD=.
科目:初中数学 来源: 题型:
【题目】有两个不透明的袋子,甲袋子里装有标有两个数字的张卡片,乙袋子里装有标有三个数字的张卡片,两个袋子里的卡片除标有的数字不同外,其大小质地完全相同.
(1)从乙袋里任意抽出一张卡片,抽到标有数字的概率为 .
(2)求从甲、乙两个袋子里各抽一张卡片,抽到标有两个数字的卡片的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.
(1)求B、D两点的坐标;
(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;
(3)在第(2)问中,当PH+HF+CF取得最小值时,将△OHF绕点O顺时针旋转60°后得到△OH′F′,过点F′作OF′的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将抛物线平移后,新抛物线经过原抛物线的顶点,新抛物线与轴正半轴交于点,联结,,设新抛物线与轴的另一交点是,新抛物线的顶点是.
(1)求点的坐标;
(2)设点在新抛物线上,联结,如果平分,求点的坐标;
(3)在(2)的条件下,将抛物线沿轴左右平移,点的对应点为,当和相似时,请直接写出平移后得到抛物线的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC内接于⊙O,∠BCA=90°,∠CBA=60°,AB=10,点D是AB边上(异于点A,B)的一动点,DE⊥AB交⊙O于点E,交AC于点G,交切线CF于点F.
(1)求证:FC=CG;
(2)①当AE= 时,四辺形BOEC为菱形;
②当AD= 时,OG∥CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学在艺术节期间向全校学生征集书画作品,美术王老师从全校随机抽取了四个班级记作A、B、C、D,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)王老师抽查的四个班级共征集到作品多少件?
(2)请把图2的条形统计图补充完整;
(3)若全校参展作品中有五名同学获得一等奖,其中有三名男生、二名女生.现在要在其中抽两名同学去参加学校总结表彰座谈会,请用画树状图或列表的方法求恰好抽中一名男生一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开设了:篮球,:足球,:跳绳,:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).
(1)这次调查中,一共查了 名学生;
(2)请补全两幅统计图;
(3)若有3名最喜欢足球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢足球运动的学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线与轴分别交于点A(-3,0),B(m,0).将y1向右平移4个单位得到y2.
(1)求b的值;
(2)求抛物线y2的表达式;
(3)抛物线y2与轴交于点D,与轴交于点E、F(点E在点F的左侧),记抛物线在D、F之间的部分为图象G(包含D、F两点),若直线与图象G有一个公共点,请结合函数图象,求直线与抛物线y2的对称轴交点的纵坐标t的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).
(1)则b=,c=;
(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;
(3)在所给坐标系中画出该二次函数的图象;
(4)根据图象,当-3<x<2时,y的取值范围是.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com