精英家教网 > 初中数学 > 题目详情
如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连接BO、ED,有BOED,作弦EF⊥AC于G,连接DF.
(1)求证:AB为⊙O的切线;
(2)若⊙O的半径为5,sin∠DFE=
3
5
,求EF的长.
(1)证明:连接OE.
∵EDOB,
∴∠1=∠2,∠3=∠OED.
又OE=OD,
∴∠2=∠OED,
∴∠1=∠3.
又OB=OB,OE=OC,
∴△BCO≌△BEO.(SAS)
∴∠BEO=∠BCO=90°,即OE⊥AB.
∴AB是⊙O切线.

(2)连接CE,
∵∠F=∠4,CD=2•OC=10;
由于CD为⊙O的直径,∴在Rt△CDE中有:
ED=CD•sin∠4=CD•sin∠DFE=10×
3
5
=6

CE=
CD2-ED2
=
102-62
=8

在Rt△CEG中,
EG
CE
=sin∠4=
3
5

∴EG=
3
5
×8=
24
5

根据垂径定理得:EF=2EG=
48
5

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,过⊙O外一点M作⊙O的两条切线,切点为A、B,连接AB、OA、OB、C、D在⊙O上居于弦AB两端,过点D作⊙O的切线交MA、MB于E、F,连接OE、OF、CA、CB,则图中与∠ACB相等的角(不包含∠ACB)有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,割线PAB、PCD分别交⊙O于AB和CD,若PC=2,CD=16,PA:AB=1:2,则AB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,O是已知线段AB上一点,以OB为半径的⊙O交线段AB于点C,以线段AO为直径的半圆交⊙O于点D,过点B作AB的垂线与AD的延长线交于点E;
(1)求证:AE切⊙O于点D;
(2)若AC=2,且AC、AD的长是关于x的方程x2-kx+4
5
=0
的两根,求线段EB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA、PB是⊙O的两条切线,切点A、B.如果∠APO=25°,则∠AOB等于(  )
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,过点C的切线与AB的延长线相交于点D,AE⊥DC交DC于点E.
(1)求证:AC是∠EAB的平分线;
(2)若BD=2,DC=4,求AE和BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△ABC中,以AB为直径的⊙O交AC于点D,且D为AC的中点,过D作DE丄CB,垂足为E.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)已知CD=4,CE=3,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于C,AB=3cm,PB=4cm,则BC=______cm.

查看答案和解析>>

同步练习册答案