精英家教网 > 初中数学 > 题目详情
(2009•大连)如图1,在△ABC和△PQD中,AC=kBC,DP=kDQ,∠C=∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连接EQ交PC于点H.
猜想线段EH与AC的数量关系,并证明你的猜想.说明:如果你经历反复探索,没有解决问题,可以从下面①、②中选取一个作为已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得6分.
①AC=BC,DP=DQ,∠C=∠PDQ(如图2);
②在①的条件下且点P与点B重合(如图3

【答案】分析:(1)取BC中点F,连接DE,DF.利用三角形中位线性质可知四边形DFCE是平行四边形,由已知中角的相等,利用等量相加和相等,可得∠PDF=∠QDE,DF∥AC,可得,即DF=kDE(DE=BF=BC),可证出△PDF∽△QDE.就有∠DFB=∠DEQ,又DE,BC平行可得∠DEQ=∠EHC,那么等量代换就有∠EHC=∠DFB=∠C,因此得证.
(2)和(1)的证法相同.
(3)连接AQ,利用已知条件可证出△DPQ∽△ACB,那么就有∠ABC=∠BAC,且∠DBQ=∠DQB,那么DB=DQ.能判定△ABQ是直角三角形,同样,△AQC也是直角三角形,HE是斜边上的高,所以就有EH=AC.
解答:解:结论:EH=AC.(1分)
证明:取BC边中点F,连接DE、DF.(2分)
∵D、E、F分别是边AB、AC、BC的中点.
∴DE∥BC且DE=BC,
DF∥AC且DF=AC,(4分)
EC=AC∴四边形DFCE是平行四边形.
∴∠EDF=∠C.
∵∠C=∠PDQ,∴∠PDQ=∠EDF,∴∠PDF=∠QDE.(6分)
又∵AC=kBC,∴DF=kDE.
∵DP=kDQ,∴.(7分)
∴△PDF∽△QDE.(8分)
∴∠DEQ=∠DFP.(9分)
又∵DE∥BC,DF∥AC,∴∠DEQ=∠EHC,∠DFP=∠C.
∴∠C=∠EHC.(10分)
∴EH=EC.(11分)
∴EH=AC.(12分)

选图2.结论:EH=AC.(1分)
证明:取BC边中点F,连接DE、DF.(2分)
∵D、E、F分别是边AB、AC、BC的中点,
∴DE∥BC且DE=BC,DF∥AC且DF=AC,(4分)
EC=AC,∴四边形DFCE是平行四边形.
∴∠EDF=∠C.
∵∠C=∠PDQ,∴∠PDQ=∠EDF,∴∠PDF=∠QDE.(6分)
又∵AC=BC,∴DE=DF,∵PD=QD,∴△PDF≌△QDE.(7分)
∴∠DEQ=∠DFP.
∵DE∥BC,DF∥AC,∴∠DEQ=∠EHC,∠DFP=∠C.
∴∠C=∠EHC (8分)
∴EH=EC.(9分)
∴EH=AC.(10分)

选图3.结论:EH=AC.(1分)
证明:连接AH.(2分)
∵D是AB中点,∴DA=DB.
∵AC=kBC,DP=kDQ,
=k,
又∵∠C=∠PDQ,
∴△ACB∽△PDQ,
∴∠ABC=∠PQD,
∴DB=DQ,
∴DQ=DP=AD,
∵∠DBQ+∠DQB+∠DQA+∠DAQ=180°,
∴∠AQB=90°,
∴AH⊥BC.(4分)
又∵E是AC中点,
∴HE=AC.(6分)
点评:本题利用了三角形中位线的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2009•大连)如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,)在抛物线上,求m的值.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省大连市中考数学试卷(解析版) 题型:解答题

(2009•大连)如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线F与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a′x2+b′x+c′,抛物线F′与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);
(2)若a、b、c满足了b2=2ac
①求b:b′的值;
②探究四边形OABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省大连市中考数学试卷(解析版) 题型:解答题

(2009•大连)如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,)在抛物线上,求m的值.

查看答案和解析>>

科目:初中数学 来源:2010年北京市中考模拟试卷汇总:圆(解析版) 题型:解答题

(2009•大连)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.
(1)判断直线CD是否是⊙O的切线,并说明理由;
(2)若CD=,求BC的长.

查看答案和解析>>

同步练习册答案