精英家教网 > 初中数学 > 题目详情
17.如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC.
(1)求证:BC∥OP;
(2)若半圆O的半径等于2,填空:
①当AP=2时,四边形OAPC是正方形;
②当AP=2$\sqrt{3}$时,四边形BODC是菱形.

分析 (1)根据切线的性质,可以得到OP⊥AC,由AB是圆O的直径,可以得到AC⊥BC,从而可以得到BC∥OP;
(2)①若四边形OAPC是正方形,根据正方形的性质可以得到AP的长;
②若四边形BODC是菱形,根据菱形的性质,通过变形,可以得到AP的长.

解答 (1)证明:连接OC,AC,如右图所示,
∵AB是直径,AM⊥AB,
∴BC⊥AC,AP是圆的切线,
∵PC切半圆O于点C,
∴PA=PC,
又∵OA=OC,
∴OP⊥AC,
∴BC∥OP;
(2)①若四边形OAPC是正方形,则OA=AP,
∵OA=2,
∴AP=2.
故答案为:2;
②若四边形BODC是菱形,则CB=BO=OD=DC,
∵AB=2OB,∠ACB=90°,
∴AB=2BC,
∴∠BAC=30°,∠ABC=60°,
∵BC∥OP,
∴∠AOP=∠ABC=60°,
又∵∠OAP=90°,OA=2,
∴∠OPA=30°,
∴OP=4,
∴AP=$\sqrt{O{P}^{2}-O{A}^{2}}=\sqrt{{4}^{2}-{2}^{2}}=2\sqrt{3}$,
故答案为:2$\sqrt{3}$.

点评 本题考查圆的综合题,解题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用数形结合的思想解答问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.已知⊙O的半径OA=3,B为⊙O上一点,延长OB,在OB延长线上截取一点C,使得BC=2,CD垂直于BC交AB延长线于点D,连接AC,若AC=CD,则AB=$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE=4:3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A(-1,0)、B(3,0),与y轴负半轴交于点C.
(1)若△ABD为等腰直角三角形,求此时抛物线的解析式;
(2)a为何值时△ABC为等腰三角形?
(3)在(1)的条件下,抛物线与直线y=$\frac{5}{4}$x-4交于M、N两点(点M在点N的左侧),动点P从M点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点N,若使点P运动的总路径最短,求点P运动的总路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知抛物线y=2x2+bx+c与直线y=-1只有一个公共点,且经过A(m-1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为22.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,E是正方形ABCD内一点,E到点A、D、B的距离EA、ED、EB分别为1、3$\sqrt{2}$、2$\sqrt{5}$,延长AE交CD于点F,则四边形BCFE的面积为$\frac{109}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.

(1)如图1,当C点运动到O点时,求PT的长;
(2)如图2,当C点运动到A点时,连接PO、BT,求证:PO∥BT;
(3)如图3,设PT=y,AC=x,求y与x的解析式并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.一铅球运动员抛出铅球后,铅球离抛掷点的水平距离y(米)与铅球在空中运动时间x(秒)之间的关系类似于y=-x2+6x+3,则该运动员的铅球成绩是12米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.BC是半圆⊙A的直径,点D,E是圆上两点,并且∠DAE是直角,点F是弦CD、BE的交点.
(1)△EFC是什么三角形?
(2)如果AF∥CE,求DC:DB的值.

查看答案和解析>>

同步练习册答案