精英家教网 > 初中数学 > 题目详情
如图所示,过点A(1,0)作垂直x轴的直线l,分别交函数y1=x(x≥0),y2=
4x
(x>0)图象于B、C两点,则BC=
3
3
分析:先把x=1分别代入两个解析式,确定B点与C点坐标,然后利用两点的纵坐标求出BC.
解答:解:把x=1代入y1=x(x≥0)得y=1,则B点坐标为(1,1);
把x=1代入y2=
4
x
(x>0)得y=4,则C点坐标为(1,4),
所以BC=4-1=3.
故答案为3.
点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=
k
x
(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;双曲线是关于原点对称的,两个分支上的点也是关于原点对称.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图所示,过点P画直线a的平行线b的作法的依据是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,过点A(a,0)(a>0)且平行于y轴的直线分别与抛物线y=x2及y=
14
x2交于C、B精英家教网两点.
(1)求点C、B的坐标;
(2)求线段AB与BC的比;
(3)若正方形BCDE的一边DE与y轴重合,求此正方形BCDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,过点F(0,1)的直线y=kx+b与抛物线y=
14
x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2>0).
(1)求b的值.
(2)求x1•x2的值.
(3)分别过M,N作直线l:y=-1的垂线,垂足分别是 M1和N1.判断△M1FN1的形状,并证明你的结论.
(4)对于过点F的任意直线MN,是否存在一条定直线m(m是常数),使m与以MN为直径的圆相切?如果有,请求出这条直线m的解析式;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,过点D分别作DE∥BC,交AC于E,作DF∥AB,交BC于F,若AD:DC=1:2,则△ADE,△DCF,平行四边形DEBF的面积比是(  )

查看答案和解析>>

同步练习册答案