精英家教网 > 初中数学 > 题目详情
如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动.当点P的横坐标为12时,直线OP与⊙A的位置关系是(  )
A.相交B.相切C.相离D.不能确定

直线OP与⊙A相交.
理由如下:
作AD⊥OP于D,如图所示:
可得∠ADP=90°,
又∠PBO=90°,
∴∠ADP=∠PBO,又∠APD=∠OPB,
∴△PAD△POB,
又PA=PB-AB=12-4=8,OB=3,
在直角△OBP中,OB=3,BP=12,
根据勾股定理得:OP=
BO2+BP2
=
153

PA
OP
=
AD
OB
,即
8
153
=
AD
3

解得:AD=
24
153
153

24
153
153
≈1.9<2=r,
∴直线OP与⊙A相交.
故选:A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD的对角线AC上有一动点O,以OA为半径作⊙O交AD、AC于点E、F,连结CE.
(1)若CE恰为⊙O的切线,求证:∠ACB=∠DCE;
(2)在(1)的条件下,若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H,若OH=2,AB=12,BO=13.求:
(1)⊙O的半径;
(2)sin∠OAC的值;
(3)弦AC的长(结果保留含有根号的式子).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,PC切⊙O于C,AD⊥PD,CM⊥AB,垂足分别为D,M.
(1)求证:CB平分∠PCM;
(2)若∠CBA=60°,求证:△ADM为等边三角形;
(3)若PO=5,PC=a,⊙O的半径为r,且a,r是关于x的方程x2-(2m+1)x+4m=0的两根,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC是弦,D是
BC
的中点,过点D作AC的延长线的垂线DP,垂足为P.若PD=12,PC=8,求⊙O的半径R的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上运动(与A、B两点不重合),如果∠P=46°,那么∠ACB的度数是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P是半径为6的⊙O外一点,过点P作⊙O的割线PAB,点C是⊙O上一点,且PC2=PA•PB.求证:
(1)PC是⊙O的切线;
(2)若sin∠ACB=
5
3
,求弦AB的长;
(3)已知在(2)的条件下,点D是劣弧AB的中点,连接CD交AB于E,若AC:BC=1:3,求CE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为(  )
A.34πcm2B.128πcm2C.32πcm2D.16πcm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于(  )
A.20°B.30°C.40°D.50°

查看答案和解析>>

同步练习册答案