精英家教网 > 初中数学 > 题目详情
(2012•天津)已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA)、B(0,yB)、C(-1,yC)在该抛物线上.
(Ⅰ)当a=1,b=4,c=10时,
①求顶点P的坐标;
②求
yA
yB-yC
的值;
(Ⅱ)当y0≥0恒成立时,求
yA
yB-yC
的最小值.
分析:(Ⅰ)将a=1,b=4,c=10代入解析式,即可得到二次函数解析式;
①将二次函数化为顶点式,即可得到抛物线顶点坐标;
②将A(1,yA)、B(0,yB)、C(-1,yC)分别代入解析式,即可求出yA、yB、yC的值,然后计算
yA
yB-yC
的值即可;
(Ⅱ)根据0<2a<b,求出x0=-
b
2a
<-1,作出图中辅助线:点A作AA1⊥x轴于点A1,则AA1=yA,OA1=1.连接BC,过点C作CD⊥y轴于点D,则BD=yB-yC,CD=1.过点A作AF∥BC,交抛物线于点E(x1,yE),交x轴于点F(x2,0),证出Rt△AFA1∽Rt△BCD,得到
yA
yB-yC
=
1-x2
1
=1-x2,再根据△AEG∽△BCD得到
yA-yE
yB-yC
=1-x1,然后求出yA、yB、yC、yE的表达式,然后y0≥0恒成立,得到x2≤x1<-1,从而利用不等式求出
yA
yB-yC
的最小值.
解答:解:(Ⅰ)若a=1,b=4,c=10,
此时抛物线的解析式为y=x2+4x+10.
①∵y=x2+4x+10=(x+2)2+6,
∴抛物线的顶点坐标为P(-2,6).
②∵点A(1,yA)、B(0,yB)、C(-1,yC)在抛物线y=x2+4x+10上,
∴yA=15,yB=10,yC=7.
yA
yB-yC
=
15
10-7
=5.

(Ⅱ)由0<2a<b,得x0=-
b
2a
<-1.
由题意,如图过点A作AA1⊥x轴于点A1,则AA1=yA,OA1=1.
连接BC,过点C作CD⊥y轴于点D,则BD=yB-yC,CD=1.
过点A作AF∥BC,交抛物线于点E(x1,yE),交x轴于点F(x2,0),
则∠FAA1=∠CBD.
于是Rt△AFA1∽Rt△BCD.
AA1
BD
=
FA1
CD
,即
yA
yB-yC
=
1-x2
1
=1-x2
过点E作EG⊥AA1于点G,
易得△AEG∽△BCD.
AG
BD
=
EG
CD
,即
yA-yE
yB-yC
=1-x1
∵点A(1,yA)、B(0,yB)、C(-1,yC)、E(x1,yE)在抛物线y=ax2+bx+c上,
得yA=a+b+c,yB=c,yC=a-b+c,yE=ax12+bx1+c
(a+b+c)-(ax12+bx1+c)
c-(a-b+c)
=1-x1
化简,得x12+x1-2=0
解得x1=-2(x1=1舍去).
∵y0≥0恒成立,根据题意,有x2≤x1<-1,
则1-x2≥1-x1,即1-x2≥3.
yA
yB-yC
的最小值为3.
点评:本题考查了配方法求二次函数顶点坐标,函数图象上点的坐标特征,以及相似三角形的性质,利用不等式求最值,综合性很强,旨在考查同学们的综合逻辑思维能力,要认真对待.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•天津)“三等分任意角”是数学史上一个著名问题.已知一个角∠MAN,设∠α=
13
∠MAN.
(Ⅰ)当∠MAN=69°时,∠α的大小为
23
23
(度);
(Ⅱ)如图,将∠MAN放置在每个小正方形的边长为1cm的网格中,角的一边AM与水平方向的网格线平行,另一边AN经过格点B,且AB=2.5cm.现要求只能使用带刻度的直尺,请你在图中作出∠α,并简要说明做法(不要求证明)
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.
如图,让直尺有刻度一边过点A,设该边与过点B的竖直方向的网格线交于点C,与过点B水平方向的网格线交于点D,保持直尺有刻度的一边过点A,调整点C、D的位置,使CD=5cm,画射线AD,此时∠MAD即为所求的∠α.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天津)已知反比例函数y=
k-1x
(k为常数,k≠1).
(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天津)已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.

(Ⅰ)如图①,若∠BAC=25°,求∠AMB的大小;
(Ⅱ)如图②,过点B作BD⊥AC于E,交⊙O于点D,若BD=MA,求∠AMB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

查看答案和解析>>

同步练习册答案