精英家教网 > 初中数学 > 题目详情
19.(1)计算:|-2|+2cos60°-($\sqrt{3}-\sqrt{2}$)0
(2)解不等式:$\frac{5x-1}{3}$-x>1,并将解集在数轴上表示出来.

分析 (1)根据实数的混合运算顺序和法则计算可得;
(2)根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.

解答 解:(1)原式=2+2×$\frac{1}{2}$-1=2+1-1=2;

(2)5x-1-3x>3,
2x>4,
x>2,
将解集表示在数轴上如下:

点评 本题主要考查实数的混合运算和解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,已知AB∥CD,∠1=140°,则∠2=40°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解不等式组:$\left\{\begin{array}{l}{3-x≤2(x-3)}\\{x≥\frac{x-1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解不等式组$\left\{\begin{array}{l}{5x-2≥3(x-1)}\\{\frac{1}{2}x-1<5-\frac{3}{2}x}\end{array}\right.$,并把解集在所给数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:(-$\frac{1}{2}$)-2+($\sqrt{2}-$1.414)0-3tan30°-$\sqrt{(-2)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的(  )
A.平均数B.方差C.中位数D.极差

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,在△ABC中,AB=AC=5cm,BD⊥AC于D,BD=4cm,点M从A出发,沿AC的方向匀速运动,同时直线PQ由B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于P,交BC于Q,交BD于F,连接PM,设运动时间为t(0<t≤3).线段CM的长度记作y1,线段BP的长度记作y2,y1和y2关于时间t的函数变化情况如图2所示.
(1)如图2可知,点M的运动速度是每秒$\frac{5}{3}$cm,当t为$\frac{15}{8}$秒时,四边形PQCM是平行四边形?在图2中反映这一情况的点是($\frac{15}{8}$,$\frac{15}{8}$);
(2)设四边形PQCM的面积为Scm2,求S与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形PQCM=$\frac{1}{3}$S△ABC?若存在,求出t的值;若不存在,请说明理由;
(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.我市某食品厂“端午节”期间,为了解市民对肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)四种不同口味粽子的喜爱情况,对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将不完整的条形图补充完整.
(3)若居民区有6000人,请估计爱吃C粽的人数?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB切⊙O于点B,OA=6,sinA=$\frac{1}{3}$,弦BC∥OA.
(1)求AB的长;
(2)求四边形AOCB的面积.

查看答案和解析>>

同步练习册答案